Allrounder im Wartestand

Langzeitspeicher, Regelenergie-Erzeuger und Ökosprit-Lieferant - Power-to-Gas-Anlagen könnten bei der Energiewende eine zentrale Rolle übernehmen. Doch noch ist die Technik zu teuer.

Von Sascha Rentzing

uf guten Wind folgt bei Windradbetrei- Absatz nicht gesichert ist", erklärt Ove Petersen, bern in Schleswig-Holstein oft der Frust. Immer häufiger regeln Netzbetreiber ihre Turbinen ab, weil sonst zu viel Strom in die Leitungen drängen und die Balance im Netz gefährden würde. Allein im ersten Halbjahr 2015 konnten laut Bundesnetzagentur in Deutschland

durch das sogenannte Einspeisemanage-

den Strom aus Erneuerbaren-Anlagen und Blockheizkraftwerken (BHKW) nicht produziert werden - das entspricht etwa dem Halbjahresverbrauch einer Metropole wie Hamburg. "Die Plagieanlagen im Norden

Geschäftsführer des Erneuerbaren-Projektierers GP Joule aus dem nordfriesischen Reußenköge.

Ein neues Kombikraftwerk der Firma könnte Abhilfe schaffen. Herzstück ist eine Biogasanlage, die um einen sogenannten Elektrolyseur erweitert ist. Immer dann, wenn Windräder in der Umgebung zu viel Strom produzieren, wandelt dieser die Überschüsse per Elektrolyse in Wasserstoff (H2) um, der in Tanks gespeichert wird. Die dabei entstehende Wärme wird ins Fernwärmenetz eingespeist. Steigt der Strombedarf wieder, wird der Wasserstoff mit dem Biogas im BHKW der Anlage verbrannt. "Auf diese Weise kann eine dezentrale Biogasanlage als Regelkraftwerk fungieren", sagt Petersen. Soeben hat GP Joule den Elektrolyseur der Anlage in der letzten Ausbaustufe auf eine Gesamtleistung von nung von Windener- 200 Kilowatt aufgestockt. Er besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf Kilowird schwieriger, da der watt Leistung. Ab 2017 soll der "Stromlücken-

Gestapelte Trennwände: PEM-Elektrolyseure verwenden spezielle protonenleitende Membranen, um Wasser mittels Strom in Wasserstoff und Sauerstoff zu

© PV-Archiv D1174-01: 1/35

füller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein.

Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung

und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den

Vorratslager: Der Erdgasspeicher des Energiekonzerns Eon im Hamburger Stadtteil Reitbrook hat ein Volumen von rund 350 Millionen Kubikmetern.

Wenn die Energiewende im Wärmemarkt und in der Mobilität Fahrt aufnehmen soll, werden wir Power to Gas schon bald brauchen."

Michael Specht, ZSW

Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt. "Die Frage ist, was wollen wir erreichen? Wenn die Energiewende im Wärmemarkt und in der Mobilität Fahrt aufnehmen soll, werden wir Power to Gas schon bald brauchen", sagt Michael Specht von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) in Stuttgart.

1000 Megawatt bis 2022

Auch die Deutsche Energie-Agentur (Dena) fordert in ihrer Roadmap für Power to Gas deshalb eine schnelle Entwicklung der Technik. Ab 2022 soll das Verfahren großtechnisch und wirtschaftlich tragfähig eingesetzt werden können, heißt es. Um das Ziel zu erreichen, sollen bis dahin in Deutschland Pilot- und Demonstrationselek-

trolyseure mit einer Gesamtleistung von 1000 Megawatt errichtet werden. Das ist ein ehrgeiziges Vorhaben, wenn man bedenkt, dass hierzulande erst 20 Power-to-Gas-Anlagen mit insgesamt 30 Megawatt Leistung in Betrieb sind und noch viele technische Fragen zu lösen sind. Da die Ökostromproduktion witterungsbedingt stark schwankt, müssen die Anlagen auf ständige Lastwechsel reagieren. Die herkömmlichen alkalischen Elektrolyseure eignen sich hierfür nur bedingt, da sie für einen relativ konstanten Lastbereich ausgelegt sind. Neuartige PEM-Elektrolyseure (PEM steht für Polymer Electrolyte Membrane) können Schwankungen schneller folgen. Beim PEM-Verfahren wird statt Alkalilauge destilliertes Wasser als Elektrolyt verwendet und über eine spezielle, protonenleitende Membran durch Strom in Wasserstoff und Sauerstoff gespalten - das geschieht dank der sehr guten Leitfähigkeit der Membran in Millisekunden.

neue energie 02/2016

Allerdings muss die Technik für den großtechnischen Einsatz noch kompakter und langlebiger werden. Ein weiteres Manko ist die Effizienz des Power-to-Gas-Verfahrens. Elektrolyseure wandeln Strom mit einem Wirkungsgrad von maximal 80 Prozent in Wasserstoff um. Schaltet man die Methanisierung nach, fällt der Wert auf 50 Prozent. Wird am Ende wieder elektrische Energie erzeugt, sinkt die Effizienz auf weniger als 40 Prozent.

Ein weiteres Problem dabei: Die Methanisierung funktioniert nur mit Kohlendioxid, das mit Wasserstoff im sogenannten Sabatier-Prozess in Methan und Wasser umgewandelt wird. Bei einigen Pilotprojekten wird das CO₂ noch in Flaschen angeliefert. Doch wenn das Verfahren künftig im großen Stil Anwendung finden soll, sind weitaus größere Mengen nötig. Nur woher sollen diese kommen? Das CO₂ aus Kohlekraftwerken zu verwenden wäre eine Möglichkeit, wird aber aus ökologischen Gründen kritisch gesehen. Erwogen wird deshalb unter anderem, das Gas direkt vor Ort aus der Luft zu gewinnen. Bei dem Verfahren der Schweizer Firma Climeworks

etwa wird es in einen Filter mit speziellen Molekülen gesogen, an denen sich die CO₂-Moleküle sammeln können. Allerdings benötigt auch dieser Prozess Energie, etwa um das CO₂ aus dem Filter zu lösen und für die Methanisierung nutzbar zu machen.

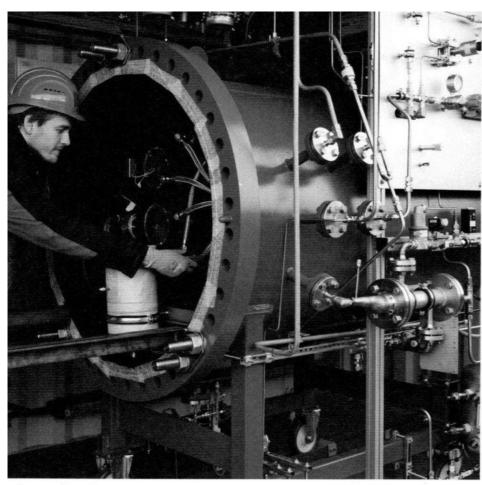
Trotz der Hürden glauben die Experten an einen Erfolg von Power to Gas. Es gebe noch großes Entwicklungspotenzial, sagt Wissenschaftler Specht. So können nach

der Studie "Development of Water Electrolysis in the European Union" der Beratungsunternehmen E4tech und Element Energy die Kosten für PEM-Systeme bis 2020 auf rund 1000 Euro pro Kilowatt installierte Leistung halbiert werden und bis 2030 sogar auf 720 Euro sinken. Maßgeblich hierfür seien Skaleneffekte durch die zunehmende Größe der Elektrolyseure. Liegt ihre Leistung heute meistens noch unter einem

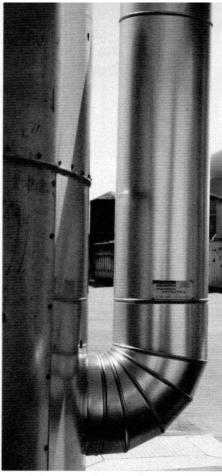
Offen für neue Energiekonzepte? Hessens Wirtschaftsminister Tarek Al-Wazir und seine rheinland-pfälzische Amtskollegin Eveline Lemke (beide Bündnis 90/Die Grünen) vor dem PEM-Elektroyseur einer Power-to-Gas-Demonstrationsanlage in Frankfurt.

© PV-Archiv D1174-01: 4/35

System-Baustein: Der Elektrolyseur gehört zu einem Hybridkraftwerk der Firma Enertrag in Prenzlau, zu dem auch drei Windräder, zwei Blockheizkraftwerke und eine Biogasanlage gehören.


Megawatt, könne ab 2020 mit Multimegawatt-Systemen gerechnet werden. Außerdem steige durch optimierte Elektrolysezellen die Effizienz des Verfahrens. Schließlich ist davon auszugehen, dass dank technischer Fortschritte bei den Erneuerbaren auch die Kosten für Solar- und Windstrom weiter sinken werden. Wird die Elektrolyse günstiger, dürften auch die Wasserstoffpreise nachgeben. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power to Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung für die Heizung oder die Prozesswärme genutzt, steigt die Effizienz, weil die Wärme nicht wirkungslos verpufft.

Forschung auf breiter Front


Um das Potenzial von Power to Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten und entwickeln neue Geschäftsmodelle in diesem Bereich. So will GP Joule die PEM-Technik als eines der ersten Unternehmen im großtechnischen Maßstab anbieten. Der hierfür vorgesehene Ein-Megawatt-Stack wird derzeit von Firmentochter H-Tec entwickelt. GP Joule-Specher Timo Bovi veranschaulicht den Vorteil der Neuentwicklung: Die Fünf-Kilowatt-Stacks der Pilotanlage in Reußenköge hätten jeweils die Größe eines Schuhkartons, die neue Ein-Megawatt-Einheit sei bei 200-facher Leistung nur etwa doppelt so groß. "Durch Materialeinsparungen und eine konsequente Weiterentwicklung der Technologie können wir so die PEM-Elektrolysestacks immer kompakter bauen und den Raumbedarf für die Anlagen damit sehr gering halten", erklärt Bovi. Auch Eon und die Spezialfirmen Hydrogenics und Solvicore setzen in ihrem Gemeinschaftsprojekt "Windgas Hamburg" bereits einen PEM-Elektrolyseur mit einem Megawatt Leistung ein. Die Anlagenoptimierung ist bei dem Vorhaben aber lediglich ein Aspekt. Die Akteure wollen außerdem testen, wie viel Wasserstoff das Erdgasnetz aufnehmen kann. Die Einspeisung von H₂ ist nur in bestimmten

Mengen möglich, da es eine wesentlich höhere Energiedichte und andere chemische Eigenschaften als Erdgas hat.

Energieversorger Thüga verfolgt mit seinem Power-to-Gas-Projekt in Frankfurt ein anderes Ziel. Im vergangenen Herbst hat er seinen Elektrolyseur virtuell in ein Smart Grid, ein intelligentes Stromnetz, integriert, das aus Windturbinen, Solaranlagen, einem BHKW und Stromverbrauchern besteht. Bis 2016 will das Unternehmen nun mit Hilfe einer im Fraunhofer-Institut für Solare Energiesysteme in Freiburg entwickelten

Biogas als Puffer: Die Anlagen des "Biopower2gas"-Projekts sind so ausgelegt, dass sie ausgleichend wirken können.

Steuerungssoftware herausfinden, ob die Technik Erzeugung und Verbrauch der Energielandschaft austarieren kann. Bei der Thüga ist man nach den ersten Eindrücken zuversichtlich, dass das klappt. Power to Gas könne Unterschiede auf die Minute genau automatisch aussteuern, heißt es. "Das haben wir bereits bewiesen", entgegnet Jörg Müller vom Ökostromanbieter Enertrag. Das

Unterneh-

men betreibt

in Prenzlau

seit 2011 ein

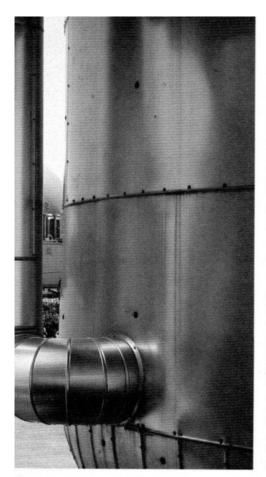
Hybridkraft-

werk, das aus

drei Wind-

Wasserstoff könnte locker mit herkömmlichem Sprit konkurrieren."

Jörg Müller, Enertrag


turbinen, zwei BHKW, einer Biogasanlage und einem Elektrolyseur besteht. Überschüssiger Strom dient der Produktion von H₂, das ins Erdgasnetz fließt. Bisher wird der Wasserstoff vom Ökoenergieanbieter Greenpeace Energy abgenommen, der es als Prowindgas verkauft. Müller hofft allerdings auch auf die Mobilitätsbranche – und auf stärkere politische Unterstützung. "Die

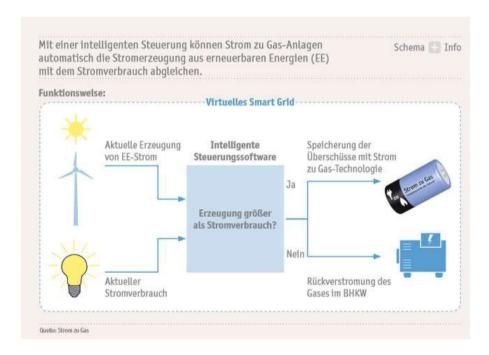
Wasserstofftechnologie ist ausgereift, Wasserstoff könnte locker mit herkömmlichem Sprit konkurrieren. Was fehlt, sind die Tankstellen und die Brennstoffzellenfahrzeuge, die das Gas nutzen könnten", sagt Müller.

Auch die Firma Sunfire aus Dresden zielt mit ihrem Produkt "Blue Crude" vorrangig auf den Kraftstoffmarkt. Dabei handelt es sich jedoch nicht um Wasserstoff, sondern um einen flüssigen Kohlenwasserstoff, aus dem sich nach Unternehmensangaben Benzin, Diesel, Kerosin und Wachse für die Industrie herstellen lassen. Sunfires Verfahren: Zunächst wird Wasserdampf mit Ökostrom bei 800 Grad Celsius in Wasserstoff und Sauerstoff gespalten. Nach der Hochtemperatur-Elektrolyse wird ein Teil des Wasserstoffs mit CO2, das von außen zugeführt wird, zu Kohlenmonoxid (CO) reduziert. Es wird mit dem restlichen Wasserstoff vermischt und bildet die Basis für das sogenannte Fischer-Tropsch-Verfahren, bei dem schließlich das energiereiche Blue Crude entsteht. Es sei sehr hochwertig und ermögliche gegenüber herkömmlichen Treib-

"

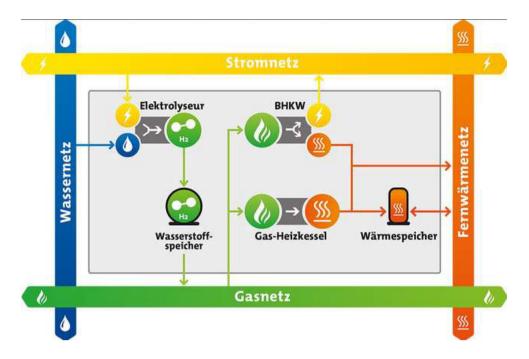
neue energie 02/2016

stoffen deutliche CO₂-Einsparungen, heißt es bei Sunfire. Audi, das in einer Power-to-Gas-Anlage im emsländischen Werlte bereits synthetisches Methan für seine Erdgasflotte herstellt, beteiligt sich deshalb an dem Pilotprojekt. Der Nachteil: Die aufwendige Produktion treibt die Kosten des Ökosprits in die Höhe. Mit einem bis 1,20 Euro pro Liter ist es derzeit noch fast doppelt so teuer wie Rohdiesel.


Damit steht Sunfire vor dem gleichen Problem wie alle Power-to-Gas-Akteure in Deutschland: Die Technik ist auf den Weg gebracht, Innovationen laufen, Sprit aus Solar- und Windstrom ist verfügbar. Doch um die Kosten für die Langzeitspeicher Wasserstoff, Methan und Kohlenwasserstoff weiter senken zu können, sind Investitionen in neue und größere Anlagen notwendig. Die Frage ist nur: Wann steigen Investoren ein?

© PV-Archiv D1174-01: 7/35

05. Feb 2016



Der Elektrolyseur der Regio Energie Solothurn wandelt überschüssigen Strom in Wasserstoff um, der in Wasserstoffspeicherflaschen zwischengespeichert und dann dosiert ins Erdgasnetz eingeleitet wird. ©Bild: Elektrolyseur der Regio Energie Solothurn

Das System von Thüga: Mit einer intelligenten Steuerung können Power-to-Gas-Anlagen automatisch die Stromerzeugung aus erneuerbaren Energien mit dem Strombedarf abgleichen. Grafik: Thüga

© PV-Archiv D1174-01: 8/35

So soll das Hybridwerk der Region Energie Solothurn funktionieren, das 2015 eingeweiht wurde. ©Bild: Elektrolyseur der Regio Energie Solothurn

Power-to-Gas: Welche technische Fragen gibt es beim Hoffnungsträger der Energiewende noch zu lösen?

(©SR) Power-to-Gas-Anlagen könnten die fluktuierende Einspeisung aus erneuerbaren Quellen wirksam abfedern. Doch die Umwandlung von Ökostrom in die speicherbaren Gase Wasserstoff und Methan ist noch zu teuer und es gibt noch einige technische Fragen zu lösen. Bei der Forschung vorn dabei sind auch Unternehmen und Institute aus der Schweiz.

Auf guten Wind folgt bei Windradbetreibern oft der Frust. Immer häufiger regeln Netzbetreiber ihre Turbinen ab, weil sonst zu viel Strom in die Leitungen drängen und die Balance im Netz gefährden würde. Allein im ersten Halbjahr 2015 konnten laut deutscher Bundesnetzagentur in Deutschland durch das sogenannte Einspeisemanagement fast 1500 Gigawattstunden Strom aus Erneuerbaren-Anlagen und Blockheizkraftwerken (BHKW) nicht produziert werden – das entspricht etwa dem Halbjahresverbrauch einer Metropole wie Hamburg. "Die Planung von Windenergieanlagen im Norden wird schwieriger, da der Absatz nicht gesichert ist", erklärt Ove Petersen, Geschäftsführer des Erneuerbaren-Projektierers GP Joule aus dem nordfriesischen Reussenköge.

Ab 2017 Ein-Megawatt-Stacks

Ein neues Kombikraftwerk der Firma könnte Abhilfe schaffen. Herzstück ist eine Biogasanlage, die um einen sogenannten Elektrolyseur erweitert ist. Immer dann, wenn Windräder in der Umgebung zu viel Strom produzieren, wandelt dieser die Überschüsse per Elektrolyse in Wasserstoff (H2) um, der in Tanks gespeichert wird. Die dabei entstehende Wärme wird ins Fernwärmenetz eingespeist. Steigt der Strombedarf wieder, wird der Wasserstoff mit dem Biogas im BHKW der Anlage wieder verbrannt. "Auf diese Weise kann eine dezentrale Biogasanlage als Regelkraftwerk fungieren", sagt Petersen. Soeben hat GP Joule den Elektrolyseur der Anlage in der letzten Ausbaustufe auf eine Gesamtleistung von 200 Kilowatt aufgestockt. Er besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf

© PV-Archiv D1174-01: 9/35

Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein.

"Die Frage ist, was wollen wir erreichen?..."

Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können grosse Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen liesse. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke in Deutschland ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Treibstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt. "Die Frage ist, was wollen wir erreichen? Wenn die Energiewende im Wärmemarkt und in der Mobilität Fahrt aufnehmen soll, werden wir Power to Gas schon bald brauchen", sagt Michael Specht von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) in Stuttgart.

Power-to-Gas im Hybridwerk Aarmatt von Regio Energie Solothurn

Die Regio Energie Solothurn eröffnete im Juni 2015 das Hybridwerk Aarmatt, das Teil des Leuchtturmprogramms des Bundesamtes für Energie BFE ist. Im Hybridwerk – an der Schnittstelle vom Solothurner Strom-, Wasser-, Gas- und Fernwärmenetz – kommt die Powerto-Gas-Technologie zum Einsatz.

Technische Daten des Elektrolyseur

Aufnahmeleistung 350 kW

El. Output Wasserstoff 60 Normkubikmeter

pro h

Wirkungsgrad 50-60 %

Modell Hogen C30 (Proton

onsite)

Weitere Informationen zum Hybridwerk Aarmatt >>

Schwankungen schnell folgen

Allerdings sind bei Power to Gas noch viele technische Fragen zu lösen. Da die Ökostromproduktion witterungsbedingt stark schwankt, müssen die Anlagen auf ständige Lastwechsel reagieren. Die herkömmlichen alkalischen Elektrolyseure eignen sich hierfür nur bedingt, da sie für einen relativ konstanten Lastbereich ausgelegt sind. Neuartige PEM-Elektrolyseure (PEM steht für Polymer Electrolyte Membrane) können Schwankungen schneller folgen. Beim PEM-Verfahren wird statt Alkalilauge destilliertes Wasser als Elektrolyt verwendet und über eine spezielle, protonenleitende Membran durch Strom in

© PV-Archiv D1174-01: 10/35

Wasserstoff und Sauerstoff gespalten – das geschieht dank der sehr guten Leitfähigkeit der Membran in Millisekunden. Allerdings muss die Technik für den grosstechnischen Einsatz noch kompakter und langlebiger werden. Ein weiteres Manko ist die Effizienz des Power-to-Gas-Verfahrens. Elektrolyseure wandeln Strom mit einem Wirkungsgrad von maximal 80 Prozent in Wasserstoff um. Schaltet man die Methanisierung nach, fällt der Wert auf 50 Prozent. Wird am Ende wieder elektrische Energie erzeugt, sinkt die Effizienz auf weniger als 40 Prozent.

Grössere Mengen an CO2

Ein weiteres Problem dabei: Die Methanisierung funktioniert nur mit Kohlendioxid (CO2), das mit Wasserstoff im sogenannten Sabatier-Prozess in Methan und Wasser umgewandelt wird. Bei einigen Pilotprojekten wird das CO2 noch in Flaschen angeliefert. Doch wenn das Verfahren künftig im grossen Stil Anwendung finden soll, sind weitaus grössere Mengen nötig. Nur woher sollen diese kommen? Das CO2 aus Kohlekraftwerken zu verwenden wäre eine Möglichkeit, wird aber aus ökologischen Gründen kritisch gesehen. Erwogen wird deshalb unter anderem, das Gas direkt vor Ort aus der Luft zu gewinnen. Bei dem Verfahren der Schweizer Firma Climeworks etwa wird es in einen Filter mit speziellen Molekülen gesogen, an denen sich die CO2-Moleküle sammeln können. Allerdings benötigt auch dieser Prozess Energie, etwa um das CO2 aus dem Filter zu lösen und für die Methanisierung nutzbar zu machen.

Ab 2020 mit Multimegawatt-Systemen

Trotz der Hürden glauben die Experten an einen Erfolg von Power to Gas. Es gebe noch grosses Entwicklungspotenzial, sagt Wissenschaftler Specht. So können nach einer Studie der Beratungsunternehmen E4tech und Element Energy die Kosten noch deutlich sinken. Massgeblich hierfür seien Skaleneffekten durch die zunehmende Grösse der Elektrolyseure. Liegt ihre Leistung heute meistens noch unter einem Megawatt, rechnen die Experten ab 2020 mit Multimegawatt-Systemen. Ausserdem steige durch optimierte Elektrolysezellen die Effizienz des Verfahrens. Schliesslich ist davon auszugehen, dass dank technischer Fortschritte bei den Erneuerbaren auch die Kosten für Solar- und Windstrom weiter sinken werden. Wird die Elektrolyse günstiger, dürften auch die Wasserstoffpreise nachgeben. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power to Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung für die Heizung oder die Prozesswärme genutzt, steigt die Effizienz, weil die Wärme nicht wirkungslos verpufft.

Um das Potenzial von Power to Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten und entwickeln neue Geschäftsmodelle in diesem Bereich. So will GP Joule die PEM-Technik als eines der ersten Unternehmen im grosstechnischen Massstab anbieten. Der hierfür vorgesehene Ein-Megawatt-Stack wird derzeit von Firmentochter H-Tec entwickelt. GP Joule-Specher Timo Bovi veranschaulicht den Vorteil der Neuentwicklung: Die Fünf-Kilowatt-Stacks der Pilotanlage in Reussenköge hätten jeweils die Grösse eines Schuhkartons, die neue Ein-Megawatt-Einheit sei bei 200-facher Leistung nur etwa doppelt so gross. "Durch Materialeinsparungen und eine konsequente Weiterentwicklung der Technologie können wir so die PEM-Elektrolysestacks immer kompakter bauen und den Raumbedarf für die Anlagen damit sehr gering halten", erklärt Bovi. Auch die Schweiz beteiligt sich an der PEM-Forschung. Hier arbeitet das Paul Scherrer Instituts aus Villigen an der Optimierung der Technik. Dazu nutzen die Wissenschaftler ein Elektrolysesystem der Firma Siemens.

Im Verbund

© PV-Archiv D1174-01: 11/35

Der ostdeutsche Energieversorger Thüga verfolgt mit seinem Power-to-Gas-Projekt in Frankfurt ein anderes Ziel. Im vergangenen Herbst hat er seinen Elektrolyseur virtuell in ein Smart Grid, ein intelligentes Stromnetz, integriert, das aus Windturbinen, Solaranlagen, einem BHKW und Stromverbrauchern besteht (siehe ee-news.ch vom 15. Dezember >>). Bis 2016 will das Unternehmen nun mit Hilfe einer im Fraunhofer-Institut für Solare Energiesysteme in Freiburg entwickelten Steuerungssoftware herausfinden, ob die Technik Erzeugung und Verbrauch der Energielandschaft austarieren kann. Bei der Thüga ist man nach den ersten Eindrücken zuversichtlich, dass das klappt. Power to Gas könne Unterschiede auf die Minute genau automatisch aussteuern, heisst es. "Das haben wir bereits bewiesen", entgegnet Jörg Müller vom Ökostromanbieter Enertrag. Das Unternehmen betreibt in Prenzlau seit 2011 ein Hybridkraftwerk, das aus drei Windturbinen, zwei BHKW, einer Biogasanlage und einem Elektrolyseur besteht. Überschüssiger Strom dient der Produktion von H2, das in das Erdgasnetz fliesst. Bisher wird der Wasserstoff vom Ökoenergieanbieter Greenpeace Energy abgenommen, der es als Prowindgas verkauft. Müller hofft allerdings auch auf die Mobilitätsbranche – und auf stärkere politische Unterstützung. "Die Wasserstofftechnologie ist ausgereift, Wasserstoff könnte locker mit herkömmlichem Sprit konkurrieren. Was fehlt, sind die Tankstellen und die Brennstoffzellenfahrzeuge, die das Gas nutzen könnten", sagt Müller.

HSR: Forscht mit EU-Partnern an grosstechnischen Langzeit-Energiespeichern 27 Forschungspartner aus sechs europäischen Ländern wollen der Power-to-Gas-Technologie aus den Kinderschuhen helfen. In den nächsten vier Jahren soll mit einem Budget von insgesamt 28 Millionen Euro erforscht werden, wie die europäischen Erdgasnetze als riesige Batterie für klimaneutral erzeugtes Methangas genutzt werden können.

Die HSR Hochschule für Technik Rapperswil koordiniert die Schweizer Aktivitäten im Rahmen des EU-Grossprojektes. 5.7 Millionen Euro des Gesamtbudgets entfallen auf die sechs beteiligten Schweizer Forschungspartner: HSR Hochschule für Technik Rapperswil, Regio Energie Solothurn, Schweizer Verband des Gas- und Wasserfachs, EPFL, EMPA, und das Unternehmen Climeworks.

Siehe ee-news.ch-Beitrag vom 30.1.16 >>

Für den Treibstoffmarkt

Auch die Firma Sunfire aus Dresden zielt mit ihrem Produkt "Blue Crude" vorrangig auf den Treibstoffmarkt. Dabei handelt es sich jedoch nicht um Wasserstoff, sondern um einen flüssigen Kohlenwasserstoff, aus dem sich nach Unternehmensangaben Benzin, Diesel, Kerosin und Wachse für die Industrie herstellen lassen. Sunfires Verfahren: Zunächst wird Wasserdampf mit Ökostrom bei 800 Grad Celsius in Wasserstoff und Sauerstoff gespalten. Nach der Hochtemperatur-Elektrolyse wird ein Teil des Wasserstoffs mit CO2, das von aussen zugeführt wird, zu Kohlenmonoxid (CO) reduziert. Es wird mit dem restlichen Wasserstoff vermischt und bildet die Basis für das sogenannte Fischer-Tropsch-Verfahren, bei dem schliesslich das energiereiche Blue Crude entsteht. Es sei sehr hochwertig und ermögliche gegenüber herkömmlichen Treibstoffen deutliche CO2-Einsparungen, heisst es bei Sunfire. Audi, das in einer Power-to-Gas-Anlage im emsländischen Werlte bereits synthetisches Methan für seine Erdgasflotte herstellt, beteiligt sich deshalb an dem

© PV-Archiv D1174-01: 12/35

Pilotprojekt. Der Nachteil: Die aufwendige Produktion treibt die Kosten des Ökosprits in die Höhe. Mit einem bis 1.20 Euro pro Liter ist es derzeit noch fast doppelt so teuer wie Rohdiesel.

Damit steht Sunfire vor dem gleichen Problem wie alle Power-to-Gas-Akteure in Deutschland: Die Technik ist auf den Weg gebracht, Innovationen laufen, Sprit aus Solar- und Windstrom ist verfügbar. Doch um die Kosten für die Langzeitspeicher Wasserstoff, Methan und Kohlenwasserstoff weiter senken zu können, sind Investitionen in neue und grössere Anlagen notwendig. Die Frage ist nur: Wann steigen Investoren ein?

©Text: Sascha Rentzing, Beiträge in den Kästen: ee-new.ch

Quelle: http://www.ee-news.ch/de/article/32912/power-to-gas-welche-technische-fragen-gibt-es-beim-hoffnungstrager-der-energiewende-noch-zu-losen

© PV-Archiv D1174-01: 13/35

IIIIII TEXT: SASCHA RENTZING

Die Windkraft bringt das Stromnetz an seine Grenzen. In Deutschland werden Windturbinen immer häufiger abgeschaltet, weil der viele Ökostrom die Netzstabilität gefährden würde. Allein im ersten Halbjahr 2015 konnten durch das sogenannte Einspeisemanagement in Deutschland fast 1500 Gigawattstunden aus Windanlagen nicht produziert werden. Die Menge hätte ausgereicht, um in diesem Zeitraum den Strombedarf Hamburgs zu decken.

Die Windmüller erhalten für den ungenutzten Strom eine Entschädigung. Allerdings müssen dafür die Stromkunden geradestehen. Im ersten Halbjahr 2015 wurden über die Netzentgelte insgesamt rund 250 Millionen Euro auf die Verbraucher umgelegt. Wenn der Ausbau der erneuerbaren Energien wie geplant weitergeht, dürfte diese Summe noch deutlich steigen. Und Deutschland ist nur der Vorreiter. Auch andere Staaten, die auf erneuerbare Energien setzen, werden über kurz oder lang die Frage klären müssen, wie sie mit überschüssigem Ökostrom umgehen.

Speicher böten einen Ausweg, indem sie die Energie aufnehmen und so die teuren Abschaltungen vermeiden. Als ein wirkungsvoller Weg gelten Power-to-Gas-Anlagen, die die Überschüsse in Wasserstoff und Methan umwandeln. Der Wasserstoff liesse sich als Sprit für Brennstoffzellenfahrzeuge verwenden, das Methan wiederum könnte problemlos in das vorhandene Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt. Power to Gas würde somit nicht nur helfen, das Stromnetz zu entlasten, sondern auch die beiden andeenergieverbrauchenden Sektoren Wärme und Mobilität anzukurbeln, die

bisher kaum zum Klimaschutz beitragen. «Wenn die Energiewende im Wärmemarkt und in der Mobilität Fahrt aufnehmen soll, werden wir Power to Gas schon bald brauchen», sagt der Wissenschaftler Michael Specht vom Forschungszentrum ZSW in Stuttgart.

Allerdings sind noch viele technische Fragen zu lösen. Da die Ökostromproduktion witterungsbedingt stark schwankt, müssen die Anlagen auf ständige Lastwechsel reagieren. Die herkömmlichen alkalischen Elektrolyseure eignen sich hierfür nur bedingt, da sie für einen relativ konstanten Lastbereich ausgelegt sind. Neuartige PEM-Elektrolyseure (PEM steht für Polymer Electrolyte Membrane) können Schwankungen schneller folgen. Beim PEM-Verfahren wird statt Alkalilauge destilliertes Wasser als Elektrolyt verwendet und über eine spezielle, protonenleitende Membran durch Strom in Wasserstoff und

24 Erneuerbare Energien Nr. 2 April 2016

Sauerstoff gespalten - das geschieht dank der sehr guten Leitfähigkeit der Membran in Millisekunden. Allerdings muss die Technik für den grosstechnischen Einsatz noch kompakter und langlebiger werden.

SCHLÜSSELTECHNIK AUS **DER SCHWEIZ**

Ein Manko ist auch die Effizienz des Power-to-Gas-Verfahrens. Elektrolyseure wandeln Strom mit einem Wirkungsgrad von maximal 80 Prozent in Wasserstoff um. Schaltet man die Methanisierung nach, fällt der Wert auf 50 Prozent. Wird am Ende wieder elektrische Energie erzeugt, sinkt die Effizienz auf weniger als 40 Prozent. Ein weiteres Problem dabei: Die Methanisierung funktioniert nur mit Kohlendioxid (CO₃), das mit Wasserstoff in Methan und Wasser umgewandelt wird. Bei einigen Pilotprojekten wird das CO, noch in Flaschen angeliefert. Doch wenn das Verfahren künftig im grossen Stil Anwendung finden soll, sind weitaus grössere Mengen nötig. Nur woher sollen diese kommen? Erwogen wird, das Gas direkt vor Ort aus der Luft zu gewinnen. Bei dem Verfahren der Schweizer Firma Climeworks etwa wird es in einen Filter mit speziellen Molekülen gesogen, an denen sich die CO2-Moleküle sammeln können. Allerdings benötigt auch dieser Prozess Energie, etwa um das CO, aus dem Filter zu lösen und für die Methanisierung nutzbar zu machen.

Trotz den Hürden glauben die Experten an einen Erfolg von Power to Gas. Es gebe

noch grosses Entwicklungspotenzial, sagt ZSW-Experte Specht. So können nach

Grüner Kraftstoff: Die Firma Sunfire produziert mit Ökostrom hochwertigen Kohlenwasserstoff, der herkömmlichem Sprit Konkurrenz machen soll.

einer Studie der Beratungsunternehmen E4tech und Element Energy die Kosten durch die zunehmende Leistungsstärke der Elektrolyseure und Effizienzgewinne noch deutlich sinken. Ausserdem ist davon auszugehen, dass auch die Kosten der Solar- und Windstromproduktion weiter fallen werden. Wird die Elektrolyse günstiger, dürfte auch der Wasserstoff preiswerter werden. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power to Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung für die Heizung oder die Prozesswärme genutzt, steigt die Effizienz, weil die Wärme nicht wirkungslos verpufft.

Genau so arbeitet zum Beispiel das sogenannte Kombikraftwerk der Firma GP Joule aus dem norddeutschen Reussenköge. Herzstück ist eine Biogasanlage, die um einen PEM-Elektrolyseur erweitert ist. Immer dann, wenn Windräder in der Umgebung zu viel Strom produzieren, wandelt dieser die Überschüsse in Wasserstoff um, der in Tanks gespeichert wird. Die dabei entstehende Wärme wird ins Fernwärmenetz eingespeist. Steigt der Strombedarf wieder, wird der Wasserstoff mit dem Biogas im Blockheizkraftwerk (BHKW) der Anlage wieder verbrannt. Auf diese Weise könne eine dezentrale Biogasanlage als Regelkraftwerk fungieren, das unvorhergesehene Leistungsschwankungen im Stromnetz ausgleicht, sagt GP-Joule-Chef Ove Petersen. Soeben hat das Unternehmen den Elektrolyseur der Anlage in der letzten Ausbaustufe auf eine Gesamtleistung von 200 Kilowatt aufgestockt. Er besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf Kilowatt Leis-

GP Joule hat das Ziel, die PEM-Technik ab 2017 als eines der ersten Unternehmen im grosstechnischen Massstab anzubieten. Der hierfür vorgesehene 1-Megawatt-Stack wird derzeit von Firmentochter H-Tec entwickelt. GP-Joule-Sprecher Timo Bovi veranschaulicht den Vorteil der Neuentwicklung: Die 5-Kilowatt-Stacks der Pilotanlage in Reussenköge hätten jeweils die Grösse eines Schuhkartons, die neue 1-Megawatt-Einheit sei bei 200-facher Leistung nur etwa doppelt so gross. «Durch Materialeinsparungen und eine konsequente Weiterentwicklung der Technologie können wir so die PEM-Elektrolysestacks immer kompakter bauen und den Raumbedarf für die Anlagen damit sehr gering halten», erklärt Bovi. Auch die Schweiz beteiligt sich an der PEM-For-

Erneuerbare Energien Nr. 2 April 2016 25

schung. Hier arbeitet das Paul Scherrer Institut (PSI) aus Villigen an der Optimierung der Technik. Es hat dafür einen Reaktor entwickelt.

KONKURRENZ FÜR DIESEL?

Für Eon und die Spezialfirmen Hydrogenics und Solvicore ist die Erprobung der PEM-Technik in ihrem Gemeinschaftsprojekt «Windgas Hamburg» nur ein Aspekt. Die Akteure wollen ausserdem testen, wie viel Wasserstoff das Erdgasnetz aufnehmen kann. Die Einspeisung von H₂ ist nur in bestimmten Mengen möglich, da es eine wesentlich höhere Energiedichte und andere chemische Eigenschaften als Erdgas hat.

Der ostdeutsche Energieversorger Thüga verfolgt mit seinem Power-to-Gas-Projekt in Frankfurt ein anderes Ziel. Er hat seinen Elektrolyseur virtuell in ein Smart Grid, ein intelligentes Stromnetz, integriert, das aus Windturbinen, Solaranlagen, einem BHKW und Stromverbrauchern besteht. Bis 2016 will das Unternehmen nun mithilfe einer speziellen Steuerungssoftware herausfinden, ob die Technik Erzeugung und Verbrauch der Energielandschaft austarieren kann. Bei der Thüga ist man nach den ersten Eindrücken zuversichtlich, dass das klappt. Power to Gas könne Unterschiede auf die Minute genau automatisch aussteuern, heisst es.

«Das haben wir bereits bewiesen», entgegnet Jörg Müller vom Ökostromanbieter Enertrag. Das Unternehmen betreibt in Prenzlau seit 2011 ein Hybridkraftwerk, das aus drei Windturbinen, zwei BHKW, einer Biogasanlage und einem Elektrolyseur besteht. Überschüssiger Strom dient der Produktion von Wasserstoff, der in das Erdgasnetz fliesst. Bisher wird der Wasserstoff vom Ökoenergieanbieter Greenpeace Energy abgenommen, der ihn als Prowindgas verkauft. Müller hofft al-

Windstrom zu Wasserstoff: Die Energieversorger Eon und Swissgas testen im Rahmen eines Power-to-Gas-Pilotprojekts in Ostdeutschland, wie sich Wasserstoff im Erdgasnetz speichern lässt.

lerdings auch auf die Mobilitätsbranche – und auf stärkere politische Unterstützung. «Die Wasserstofftechnologie ist ausgereift, Wasserstoff könnte locker mit herkömmlichem Sprit konkurrieren. Was fehlt, sind die Tankstellen und die Brennstoffzellenfahrzeuge, die das Gas nutzen könnten», sagt Müller.

WENIGER CO, ALS NORMALER TREIBSTOFF

Auch die Firma Sunfire aus Dresden zielt mit ihrem Produkt «Blue Crude» vorrangig auf den Kraftstoffmarkt. Dabei handelt es sich jedoch nicht um Wasserstoff, sondern um einen flüssigen Kohlenwasserstoff, aus dem sich nach Unternehmensangaben Benzin, Diesel, Kerosin und Wachse für die Industrie herstellen lassen. Sunfires Verfahren: Zunächst wird Wasserdampf mit Ökostrom bei 800 Grad Celsius in Wasserstoff und Sauerstoff gespalten. Nach der Hochtemperaturelektrolyse wird ein Teil des Wasserstoffs mit CO₂, das von aussen zugeführt wird, zu Kohlenmonoxid (CO) reduziert. Es wird mit dem restlichen

Wasserstoff vermischt und bildet die Basis für das sogenannte Fischer-Tropsch-Verfahren, bei dem schliesslich das energiereiche Blue Crude entsteht. Es sei sehr hochwertig und ermögliche gegenüber herkömmlichen Treibstoffen deutliche CO₂-Einsparungen, heisst es bei Sunfire. Audi, das in einer Power-to-Gas-Anlage im emsländischen Werlte bereits synthetisches Methan für seine Erdgasflotte herstellt, beteiligt sich deshalb an dem Pilotprojekt. Der Nachteil: Die aufwendige Produktion treibt die Kosten des Ökosprits in die Höhe. Mit 1 bis 1,2 Euro pro Liter ist er derzeit noch fast doppelt so teuer wie Rohdiesel.

Damit steht Sunfire vor dem gleichen Problem wie alle Power-to-Gas-Akteure: Die Technik ist auf den Weg gebracht, Innovationen laufen, Sprit aus Solar- und Windstrom ist verfügbar. Doch um die Kosten für die Langzeitspeicher Wasserstoff, Methan und Kohlenwasserstoff weiter senken zu können, sind Investitionen in neue und grössere Anlagen notwendig. Die Frage ist nur: Wann steigen Investoren ein?

Sonne tanken, besonnen handeln und 100% Sonnenstrom kaufen. Sonnenklar!

Gewonnen durch Solaranlagen des Vereins Solarspar mit 21 000 Mitgliedern

www.solarspar.ch

Sonnenenergie gewinnen

26 Erneuerbare Energien Nr. 2 April 2016

Power-to-Gas schürt Hoffnungen

Power-to-Gas-Anlagen, die überschüssigen Ökostrom in die speicherbaren Gase Wasserstoff und Methan umwandeln, könnten den Ausbau der erneuerbaren Energien erleichtern. Und sie böten eine Chance für die Gasbranche, auf deren Infrastruktur es mehr denn je ankommen würde. Von Sascha Rentzing

ie Bundesregierung hat sich beim Klimaschutz viel vorgenommen. Bis 2050 soll der Anteil erneuerbarer Energien am Stromverbrauch von derzeit knapp 35 auf 100 Prozent verdreifacht werden. Experten halten sogar ein noch höheres Ausbautempo für nötig. "Wenn es die Bundesregierung mit ihrer auf dem Klimagipfel in Paris getroffenen Verpflichtung ernst meint, die Erderwärmung auf 1,5 Grad Celsius zu begrenzen, muss bis 2050 eine regenerative Vollversorgung auch in den Sektoren Mobilität und Wärme erreicht werden", sagt der Berliner Energieprofessor Volker Quaschning.

Die Schwierigkeit wird allerdings darin bestehen, die steigenden Ökostrommengen in den Stromleitungen unterzubringen. Die Produktion von Solar- und Windstrom unterliegt witterungsbedingten Schwankungen und muss an den Bedarf angepasst werden, um die Netzstabilität nicht zu gefährden.

Entlastung für das Netz

Speicher können das Problem lösen, indem sie Stromüberschüsse aufnehmen und bei Bedarf wieder zur Verfügung stellen. Die Kapazität der deutschen Pumpspeicherkraftwerke reicht jedoch nicht aus, und Batterien sind ungeeignet, um große Strommengen über eine längere Zeit zu speichern. Doch es könnte eine Alternative geben. Denn auch Power-to-Gas-Anlagen können das Netz entlasten.

Eine der technisch fortschrittlichsten ihrer Art wurde jüngst in Reußenköge bei Husum fertiggestellt. Immer dann, wenn Windräder in der Umgebung zu viel Strom produzieren, wandelt ein Elektrolyseur mit 200 Kilowatt Leistung die Überschüsse in Wasserstoff um. Das Gas wird in Tanks gespeichert; die bei der Elektrolyse entstehende Wärme ins Fernwärmenetz eingespeist. Steigt der Strombedarf wieder, wird der Wasserstoff in einer angeschlossenen Biogasanlage wieder verbrannt. Ab 2017 will die Betreiberfirma GP Joule den Pilotstatus beenden und große Industrieanlagen im Megawattmaßstab anbieten.

Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Er bietet sich auch als Rohstoff für die Chemieindustrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in das Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versoret.

Power-to-Gas-Pilotanlage im brandenburgischen Falkenhagen: Die Anlage kann in der Stunde zwei Megawatt Strom in 360 Kubikmeter Wasserstoff umwandeln, der in das Erdgasnetz eingespeichert wird.

Nicht nur die Energiewende könnte von Power-to-Gas profitieren – weil Haushalte dank effizienterer Wärmedämmung und Technologien wie Wärmepumpen und Sonnenkollektoren immer weniger Gas zum Heizen benötigen, droht der Absatz fossiler Brennstoffe langfristig zu sinken. Über Powerto-Gas könnte die Gasinfrastruktur inklusive Erdgasnetz und Gasspeicher auch weiterhin ausgelastet werden. Viele Firmen der Gasbrache beteiligen sich daher an Powerto-Gas-Projekten, die derzeit aufgelegt werden.

Allerdings bestehen noch viele technische Fragen. Durch die volatile Ökostrom-

produktion müssen die Anlagen auf ständige Lastwechsel reagieren. Die herkömmlichen alkalischen Elektrolyseure eignen sich hierfür kaum, da sie für einen relativ konstanten Lastbereich ausgelegt sind. Neuartige PEM-Elektrolyseure (PEM steht für Polymer Electrolyte Membrane) können Schwankungen schneller folgen. Beim PEM-Verfahren wird statt Alkalilauge destilliertes Wasser als Elektrolyt verwendet und über eine spezielle, protonenleitende Membran durch Strom in Wasserstoff und Sauerstoff gespalten – das geschieht dank der sehr guten Leitfähigkeit der Membran in Millisekunden.

Für den großtechnischen Einsatz müssen die Anlagen aber noch kompakter und langlebiger werden. Ein weiteres Manko ist ihre Effizienz. Elektrolyseure wandeln Strom mit einem Wirkungsgrad von maximal 80 Prozent in Wasserstoff um. Schaltet man die Methanisierung nach, fällt der Wert auf 50 Prozent. Wird am Ende wieder elektrische Energie erzeugt, sinkt die Effizienz auf weniger als 40 Prozent.

Außerdem funktioniert die Methanisierung nur mit Kohlendioxid (CO₂), das mit Wasserstoff in Methan und Wasser umgewandelt wird. Bei einigen Pilotprojekten un: Wann steigen Investoren ein?

wird das CO₂ noch in Flaschen angeliefert. Doch industrielle Anlagen bräuchten künftig größere Mengen. Das CO₂ aus Kohlekraftwerken zu verwenden ist aus ökologischen Gründen keine Option. Erwogen wird deshalb, das Gas direkt vor Ort mit Adsorptionsanlagen aus der Luft zu filtern. Doch auch dieses Verfahren ist noch nicht ausgereift.

Trotz der Hürden glauben die Experten an einen Erfolg von Power-to-Gas. Es gebe großes Entwicklungspotential, sagt der Chemiker Michael Specht vom Forschungsinstitut ZSW in Stuttgart. So seien bei der Elektrolyse und den erneuerbaren Energien noch deutliche technische Fortschritte zu erwarten. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power-to-Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung als Fernwärme genutzt, steigt die Effizienz.

Um das Potential von Power-to-Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten. GP-Joule-Tochter H-Tec entwickelt derzeit eine PEM-Elektrolyse-Einheit mit einem Megawatt Leistung. Diese sei kaum größer als die in der Pilotanlage in Reußenköge eingesetzten Fünf-Megawatt-Stacks, erreiche aber die 200fache Leistung, erklärt Firmensprecher Timo Bovi

Investoren gesucht

Die Firma Sunfire aus Dresden geht noch einen Schritt weiter und prozessiert Wasserstoff zu Kohlenwasserstoff, einem Kraftstoff. Ihr Verfahren: Nach der Elektrolyse wird ein Teil des Wasserstoffs mit CO₂, das von außen zugeführt wird, zu Kohlenmonoxid (CO) reduziert. Dieses wird mit dem restlichen Wasserstoff vermischt und bildet die Basis für das sogenannte Fischer-Tropsch-Verfahren, bei dem schließlich das energiereiche Blue Crude entsteht. Es sei sehr hochwertig und könne fast ohne CO₂-Emissionen hergestellt werden, heißt es bei Sunfire.

Der Nachteil: Die aufwendige Produktion treibt die Kosten in die Höhe. Mit einem bis 1,20 Euro pro Liter ist Blue Crude derzeit noch fast doppelt so teuer wie Rohdiesel. Damit steht Sunfire vor dem gleichen Problem wie alle Power-to-Gas-Akteure: Die Technik ist vielversprechend, aber noch nicht konkurrenzfähig. Um die Kosten weiter senken zu können, wären Investitionen in neue und größere Anlagen notwendig. Die Frage ist nur: Wann steigen Investoren ein?

POWER-TO-GAS SCHÜRT HOFFNUNGEN

Ausbau der erneuerbaren Energien erleichtern

Power-to-Gas-Anlagen, die überschüssigen Ökostrom in die speicherbaren Gase Wasserstoff und Methan umwandeln, könnten den Ausbau der erneuerbaren Energien erleichtern. Und sie böten eine Chance für die Gasbranche, auf deren Infrastruktur es mehr denn je ankommen würde.

Die deutsche Bundesregierung hat sich beim Klimaschutz viel vorgenommen. Bis 2050 soll der Anteil erneuerbarer Energien am Stromverbrauch von derzeit knapp 35 auf 100 Prozent verdreifacht werden. Experten halten sogar ein noch höheres Ausbautempo für nötig. «Wenn es die Bundesregierung mit ihrer auf dem Klimagipfel in Paris getroffenen Verpflichtung ernst meint, die Erderwärmung auf 1,5 Grad Celsius zu begrenzen, muss bis 2050 eine regenerative Vollversorgung auch in den Sektoren Mobilität und Wärme erreicht werden», sagt der Berliner Energieprofessor Volker Quaschning. Die Schwierigkeit wird allerdings darin bestehen, die steigenden Ökostrommengen in den Stromleitungen unterzubringen. Die Produktion von Solar-

und Windstrom unterliegt witterungsbedingten Schwankungen und muss an den Bedarf angepasst werden, um die Netzstabilität nicht zu gefährden.

Entlastung für das Netz

Speicher können das Problem lösen, indem sie Stromüberschüsse aufnehmen und bei Bedarf wieder zur Verfügung stellen. Die Kapazität der deutschen Pumpspeicherkraftwerke reicht jedoch nicht aus, und Batterien sind ungeeignet, um grosse Strommengen über eine längere Zeit zu speichern. Doch es könnte eine Alternative geben. Denn auch Power-to-Gas-Anlagen können das Netz entlasten. Eine der technisch fortschrittlichsten ihrer Art wurde jüngst in Reussenköge bei Husum fertiggestellt. Immer dann, wenn Windräder in der Umgebung zu viel Strom produzieren, wandelt ein Elektrolyseur mit 200 Kilowatt Leistung die Überschüsse in Wasserstoff um. Das Gas wird in Tanks gespeichert; die bei der Elektrolyse entstehende Wärme ins Fernwärmenetz eingespeist. Steigt der Strombedarf wieder,

2/2016 | vta-aktuell D1174-01: 18/35

POWER-TO-GAS SCHÜRT HOFFNUNGEN

Ausbau der erneuerbaren Energien erleichtern

wird der Wasserstoff in einer angeschlossenen Biogasanlage wieder verbrannt. Ab 2017 will die Betreiberfirma GP Joule den Pilotstatus beenden und grosse Industrieanlagen im Megawattmassstab anbieten.

Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Er bietet sich auch als Rohstoff für die Chemieindustrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in das Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.

Nicht nur die Energiewende könnte von Power-to-Gas profitieren - weil Haushalte dank effizienterer Wärmedämmung und Technologien wie Wärmepumpen und Sonnenkollektoren immer weniger Gas zum Heizen benötigen, droht der Absatz fossiler Brennstoffe langfristig zu sinken. Über Power-to-Gas könnte die Gasinfrastruktur inklusive Erdgasnetz und Gasspeicher auch weiterhin ausgelastet werden. Viele Firmen der Gasbranche beteiligen sich daher an Power-to-Gas-Projekten, die derzeit aufgelegt werden.

Allerdings bestehen noch viele technische Fragen. Durch die volatile Ökostromproduktion müssen die Anlagen auf ständige Lastwechsel reagieren. Die herkömmlichen alkalischen Elektrolyseure eignen sich hierfür kaum, da sie für einen relativ konstanten Lastbereich ausgelegt sind. Neuartige PEM-Elektrolyseure (PEM steht für Polymer Electrolyte Membrane) können Schwankungen schneller folgen. Beim PEM-Verfahren wird statt Alkalilauge destilliertes Wasser als Elektrolyt verwendet und über eine spezielle, protonenleitende Membran durch Strom in Wasserstoff und Sauerstoff gespalten - das geschieht dank der sehr guten Leitfähigkeit der Membran in Millisekunden.

Für den grosstechnischen Einsatz müssen die Anlagen aber noch kompakter und langlebiger werden. Ein weiteres Manko ist ihre Effizienz. Elektrolyseure wandeln Strom mit einem Wirkungsgrad von maximal 80 Prozent in Wasserstoff um. Schaltet man die Methanisierung nach, fällt der Wert auf 50 Prozent. Wird am Ende wieder elektrische Energie erzeugt, sinkt die Effizienz auf weniger als 40 Prozent.

Ausserdem funktioniert die Methanisierung nur mit Kohlendioxid («), das mit Wasserstoff in Methan und Wasser umgewandelt wird. Bei einigen Pilotprojekten wird das « noch in Flaschen angeliefert. Doch industrielle Anlagen bräuchten künftig grössere Mengen. Das « aus Kohlekraftwerken zu verwenden ist aus ökologischen Gründen keine Option. Erwogen wird deshalb, das Gas direkt vor Ort mit Adsorptionsanlagen aus der Luft zu filtern. Doch auch dieses Verfahren ist noch nicht ausgereift.

POWER-TO-GAS SCHÜRT HOFFNUNGEN

Ausbau der erneuerbaren Energien erleichtern

Trotz der Hürden glauben die Experten an einen Erfolg von Power-to-Gas. Es gebe grosses Entwicklungspotential, sagt der Chemiker Michael Specht vom Forschungsinstitut ZSW in Stuttgart. So seien bei der Elektrolyse und den erneuerbaren Energien noch deutliche technische Fortschritte zu erwarten. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power-to-Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung als Fernwärme genutzt, steigt die Effizienz.

Um das Potential von Power-to-Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten. GP-Joule-Tochter H-Tec entwickelt derzeit eine PEM-Elektrolyse-Einheit mit einem Megawatt Leistung. Diese sei kaum grösser als die in der Pilotanlage in Reussenköge eingesetzten Fünf-Megawatt-Stacks, erreiche aber die 200fache Leistung, erklärt Firmensprecher Timo Bovi.

Investoren gesucht

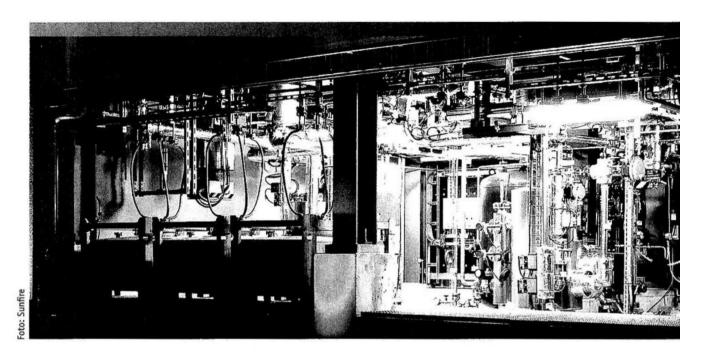
Die Firma Sunfire aus Dresden geht noch einen Schritt weiter und prozessiert Wasserstoff zu Kohlenwasserstoff, einem Kraftstoff. Ihr Verfahren: Nach der Elektrolyse wird ein Teil des Wasserstoffs mit «, das von aussen zugeführt wird, zu Kohlenmonoxid (CO) reduziert. Dieses wird mit dem restlichen Wasserstoff vermischt und bildet die Basis für das sogenannte Fischer-Tropsch-Verfahren, bei dem schliesslich das energiereiche Blue Crude entsteht. Es sei sehr hochwertig und könne fast ohne «-Emissionen hergestellt werden, heisst es bei Sunfire.

Der Nachteil: Die aufwendige Produktion treibt die Kosten in die Höhe. Mit einem bis 1,20 Euro pro Liter ist Blue Crude derzeit noch fast doppelt so teuer wie Rohdiesel. Damit steht Sunfire vor dem gleichen Problem wie alle Power-to-Gas-Akteure: Die Technik ist vielversprechend, aber noch nicht konkurrenzfähig. Um die Kosten weiter senken zu können, wären Investitionen in neue und grössere Anlagen notwendig. Die Frage ist nur: Wann steigen Investoren ein? Von Sascha Rentzing

Quelle: Frankfurter Allgemeine Zeitung Nr. 120

ZOO ZÜRICH

Nicola Spirig und Erdgas übernehmen Tierpatenschaft


Sie hat ein scharfes Gehör, einen feinen Geruchsinn und kann sich im Jugendkleid hervorragend tarnen. Zudem ist sie eine gute Schwimmerin und bekannt als flinke Läuferin: die kleine Flachlandtapir-Dame Paz, geboren am 28. September 2015 und wohnhaft im Zoo Zürich. Nicola Spirig, Triathlon Olympiasiegerin und Titelverteidigerin an den Olympischen Spielen in Rio de Janeiro 2016, übernimmt zusammen mit Hauptsponsor Erdgas die Patenschaft des Flachlandtapirs Paz. Die Patenschaft wird am 30. März 2016 anlässlich einer Veranstaltung mit Nicola Spirig im Masoala Regenwald im Zoo Zürich bekannt gegeben.

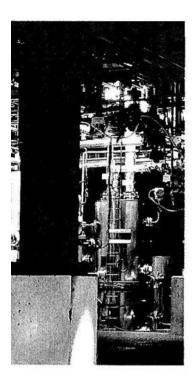
Mit der Tierpatenschaft von Flachlandtapir Paz möchte Nicola Spirig ein Zeichen setzen und einen nachhaltigen Beitrag gegen die Bedrohung des nur in Südamerika beheimateten Tieres leisten. Der Flachlandtapir wird von der Weltnaturschutzunion IUCN als bedrohte Art eingestuft. Einer der Hauptgründe ist die Bejagung, die in vielen Ländern Südamerikas nach wie vor erlaubt ist. Dabei werden das Fleisch und die Häute der grössten Säuger Südamerikas genutzt. Auch die fortschreitende Zerstörung

des Lebensraums durch Waldrodungen stellt eine Bedrohung für die Flachlandtapire dar. «Mit dieser Patenschaft möchte ich zusammen mit meinem Sponsor auf die Bedrohung dieser südamerikanischen Tierart aufmerksam machen», sagt Nicola Spirig, die nach den Olympischen Spielen in Rio zusammen mit

ihrer Familie Brasilien bereist, wo Flachlandtapire beheimatet sind.

42 2/2016 | vta-aktuell D1174-01: 20/35

Alleskönner im Wartestand


Langzeitspeicher, Regelenergie- und Ökosprit-Lieferant - Power-to-Gas-Anlagen könnten bei der Energiewende eine wichtige Rolle übernehmen. Industrie und Forschung erproben die Herstellung von Wasserstoff und Methan mittels überschüssigen Windstroms.

uf guten Wind folgt bei Betreibern von A Windenergieanlagen in Schleswig-Holstein oft der Frust. Immer häufiger regeln Netzbetreiber ihre Turbinen ab, weil sonst zu viel Windstrom in die Leitungen drängt und die Balance im Netz gefährdet wäre. Allein im ersten Halbjahr 2015 konnten laut Bundesnetzagentur in Deutschland durch das Einspeisemanagement fast 1500 Gigawattstunden Strom aus Erneuerbaren-Anlagen und Blockheizkraftwerken (BHKW) nicht produziert werden - das entspricht etwa dem Halbjahresverbrauch einer Metropole wie Hamburg. "Die Planung von Windenergieanlagen im Norden wird schwieriger, da der Absatz nicht gesichert ist", erklärt Ove Petersen, Geschäftsführer des Projektierers GP Joule aus dem nordfriesischen Reußenköge. Ein Kombikraftwerk der Firma könnte Abhilfe schaffen. Herzstück ist eine Biogasanlage, die um einen Elektrolyseur erweitert ist. Immer dann, wenn Windräder in der Umgebung zu viel Strom produzieren, spaltet dieser mithilfe der Stromüberschüsse Wasser in Wasserstoff und Sauerstoff. Der Wasserstoff wird in Tanks gespeichert. Die entstehende Wärme wird ins Fernwärmenetz eingespeist. Steigt der Strombedarf, wird der Wasserstoff mit dem Biogas im BHKW verbrannt. "Auf diese Weise kann eine dezentrale Biogasanlage als Regelkraftwerk fungieren", sagt Petersen. Soeben hat GP Joule den Elektrolyseur in der letzten Ausbaustufe auf eine Gesamtleistung von 200 Kilowatt aufgestockt. Er besteht aus 40 Einheiten (Stacks) mit jeweils fünf Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" als Industrieanlage mit stärkeren Ein-Megawatt-Stacks verfügbar sein.

Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power-to-Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen lässt. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie nutzen (etwa zur Entschwefelung von Kraftstoff), als Sprit für Brennstoffzellen-Fahrzeuge verwenden oder in Methan umwandeln, das Hauptbestandteil des Erdgases ist und problemlos ins Erdgasnetz eingespeist werden kann. "Die Frage ist, was wollen wir erreichen? Wenn die Energiewende im Wärmemarkt und in der Mobilität Fahrt aufnehmen soll, werden wir Power-to-Gas schon bald brauchen", sagt Michael Specht vom Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) in Stuttgart.

Als Letztverbraucher mit Abgaben belastet

Auch die Deutsche Energie-Agentur (Dena) fordert in ihrer Roadmap Power-to-Gas deshalb eine schnelle Entwicklung der Technik. Ab 2022 soll das Verfahren großtechnisch und wirtschaftlich tragfähig eingesetzt werden können, heißt es. Um das Ziel zu erreichen, sollen bis dahin in Deutschland Pilot- und Demonstrationselektrolyseure mit einer Gesamtleistung von 1000 Megawatt errichtet werden. Das ist ein ehrgeiziges Vorhaben, wenn man bedenkt, dass hierzulande erst 20 Power-to-Gas-Anlagen

mit insgesamt 30 Megawatt Leistung in Betrieb sind. Ambitioniert ist das Ziel auch deshalb, weil die Rahmenbedingungen für die Technik derzeit alles andere als günstig sind. Der Haken: Energiespeicher, und dazu zählen Power-to-Gas-Anlagen, werden hierzulande als Letztverbraucher eingestuft und daher mit zusätzlichen Abgaben und Umlagen für den Strombezug belastet. Der Wasserstoff, aktuell per Power-to-Gas für durchschnittlich rund 15 Cent pro Kilowattstunde erzeugt, verteuert sich dadurch um etwa zehn Cent. Das hemmt Investoren und bremst auch die Wasserstoffmobilität, die die Bundesregierung an anderer Stelle mit Milliarden fördert. Kurt Sigl vom Bundesverband eMobilität sagt, dass es unter diesen Umständen wesentlich günstiger sei, auf batteriebetriebene Elektrofahrzeuge zu setzen, die Ökostrom direkt verbrauchen.

Wirkungsgrad nicht sehr hoch

Außerdem sind bei Power-to-Gas noch technische Fragen zu lösen. Da die Ökostromproduktion witterungsbedingt stark schwankt, müssen die Anlagen auf ständige Lastwechsel reagieren. Die herkömmlichen alkalischen Elektrolyseure eignen sich hierfür nur bedingt, da sie für einen relativ konstanten Lastbereich ausgelegt sind. Neuartige PEM-Elektrolyseure (PEM = Polymer Electrolyte Membrane) können Schwankungen schneller folgen. Beim PEM-Verfahren wird statt Alkalilauge destilliertes Wasser als Elektrolyt verwendet und über eine spezielle protonenleitende Membran unter elektrischer Spannung in Wasserstoff und Sauerstoff gespalten - das geschieht dank der sehr guten Leitfähigkeit der Membran in Millisekunden, Allerdings muss die Technik für den großtechnischen Einsatz noch kompakter und langlebiger werden. Ein weiteres Manko ist die Effizienz des Power-to-Gas-Verfahrens. Elektrolyseure wandeln Strom mit einem Wirkungsgrad von maximal 80 Prozent in Wasserstoff um. Schaltet man die Methanisierung nach, fällt der Wert auf 50 Prozent. Wird am Ende wieder elektrische Energie erzeugt, sinkt die Effizienz auf weniger als 40 Prozent.

Kohlendioxid aus der Luft

Schließlich funktioniert die Methanisierung nur mit Kohlendioxid (CO2), das mit Wasserstoff im Sabatier-Prozess in Methan und Wasser umgewandelt wird. Bei einigen Pilotprojekten wird das CO2 noch in Flaschen angeliefert. Doch wenn das Verfahren künftig im großen Stil angewandt werden soll, sind größere Mengen nötig. Nur woher sollen sie kommen? Das CO2 aus Kohlekraftwerken zu verwenden wäre eine Möglichkeit, wird aber aus ökologischen Gründen kritisch gesehen. Erwogen wird deshalb unter anderem, das Gas direkt vor Ort aus der Luft zu gewinnen. Bei dem Verfahren der Schweizer Firma Climeworks etwa wird es in einen Filter mit speziellen Molekülen gesogen, an denen sich die CO2-Moleküle sammeln können. Allerdings benötigt auch dieser Prozess Energie, etwa um das CO2 aus dem Filter zu lösen und für die Methanisierung nutzbar zu machen.

Trotz der Hürden glauben die Experten an einen Erfolg von Power-to-Gas. Es gebe noch großes Entwicklungspotenzial, sagt Wissenschaftler Specht. So können nach der Studie "Development of Water Electrolysis in the European Union" der Beratungsunternehmen E4tech und Element Energy die Kosten für PEM-Systeme bis 2020 auf rund 1000 Euro pro Kilowatt installierter Leistung halbiert werden und bis 2030 sogar auf 720 Euro sinken. Maßgeblich seien Skaleneffekte durch die zunehmende Größe der Elektrolyseure. Liegt ihre Leistung heute meistens noch unter einem Megawatt, könne ab 2020 mit Multimegawatt-Systemen gerechnet werden. Außerdem steige durch optimierte Elektrolysezellen die Effizienz des Verfahrens, Schließlich ist davon auszugehen, dass dank technischer Fortschritte bei den Erneuerbaren auch die Kosten für Solar- und Windstrom weiter sinken werden. Wird die Elektrolyse günstiger, dürften auch die Wasserstoffpreise nachgeben. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power-to-Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung für die Heizung oder die Prozesswärme genutzt, steigt die Effizienz, weil die Wärme nicht verpufft.

Großtechnischer Maßstab

Um das Potenzial von Powerto-Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten und entwickeln neue Geschäftsmodelle. So will GP Joule als eines der ersten Unternehmen die PEM-Technik im großtechnischen Maßstab anbieten. Der hierfür vorgesehene Ein-Megawatt-Stack wird derzeit von Firmentochter H-Tec entwickelt. GP Joule-Specher Timo Bovi veranschaulicht den Vorteil der Neuentwicklung: Die Fünf-Kilowatt-Stacks der

© PV-Archiv D1174-01: 22/35

Pilotanlage in Reußenköge hätten jeweils die Größe eines Schuhkartons, die neue Ein-Megawatt-Einheit sei bei 200-facher Leistung nur etwa doppelt so groß. "Wir haben vor allem bei den Zellenmembranen viel Material gespart", erklärt Bovi. Auch Eon und die Spezialfirmen Hydrogenics und Solvicore setzen in ihrem Gemeinschaftsprojekt "Windgas Hamburg" einen PEM-Elektrolyseur mit einem Megawatt Leistung ein. Die Anlagenoptimierung ist bei dem Vorhaben aber nur ein Aspekt. Die Akteure wollen außerdem testen, wie viel Wasserstoff das Erdgasnetz aufnehmen kann. Die Einspeisung von Wasserstoff ist nur in bestimmten Mengen möglich, da es eine wesentlich höhere Energiedichte und andere chemische Eigenschaften als Erdgas hat.

Im intelligenten Stromnetz

Der Energieversorger Thüga verfolgt mit seinem Power-to-Gas-Projekt in Frankfurt ein anderes Ziel. Im vergangenen Herbst hat er seinen Elektrolyseur virtuell in ein Smart Grid, ein intelligentes Stromnetz, integriert, das aus Windturbinen, Solaranlagen, einem BHKW und Stromverbrauchern besteht. Bis 2016 will das Unternehmen mithilfe einer im Fraunhofer-Institut für Solare Energiesysteme in Freiburg entwickelten Steuerungssoftware herausfinden, ob die Technik Erzeugung und Verbrauch austarieren kann. Bei der Thüga ist man nach den ersten Eindrücken zuversichtlich, dass das klappt. Power-to-Gas könne Unterschiede auf die Minute genau automatisch aussteuern, heißt es.

"Das haben wir bereits bewiesen", entgegnet Jörg Müller vom Ökostromanbieter Enertrag. Das Unternehmen betreibt in Prenzlau seit 2011 ein Hybridkraftwerk, das aus drei Windturbinen, zwei BHKW, einer Biogasanlage und einem Elektrolyseur besteht. Überschüssiger Strom dient der Produktion von H2, das in das Erdgasnetz fließt. Bisher wird der Wasserstoff von Greenpeace Energy abgenommen und als Prowindgas verkauft. Müller hofft allerdings auch auf den Verkehr - und auf stärkere politische Unterstützung. "Die Wasserstofftechnologie ist ausgereift, Wasserstoff könnte locker mit herkömmlichem Sprit konkurrieren. Was fehlt, sind die Tankstellen und die Brennstoffzellen-Fahrzeuge", sagt er.

Auch die Firma Sunfire aus Dresden zielt mit ihrem Produkt "Blue Crude" vorrangig auf den Kraftstoffmarkt. Dabei handelt es sich jedoch nicht um Wasserstoff, sondern um einen flüssigen Kohlenwasserstoff, aus dem sich Benzin, Diesel, Kerosin und Wachse für die Industrie herstellen lassen.

Sunfires Verfahren: Zunächst wird Wasserdampf mit Ökostrom bei 800 Grad Celsius in Wasserstoff und Sauerstoff gespalten. Nach der Hochtemperatur-Elektrolyse reduziert ein Teil des Wasserstoffs mit CO2. das von außen zugeführt wird. zu Kohlenmonoxid (CO). Es wird mit dem restlichen Wasserstoff vermischt und bildet die Basis für das Fischer-Tropsch-Verfahren, bei dem schließlich das energiereiche Blue Crude entsteht. Es sei hochwertig und ermögliche deutliche CO2-Einsparungen gegenüber herkömmlichen Treibstoffen, heißt es bei Sunfire. Die Firma Audi, die in einer Power-to-Gas-Anlage im emsländischen Werlte bereits synthetisches Methan für seine Erdgasfahrzeuge herstellt, beteiligt sich deshalb an dem Pilotprojekt. Der Nachteil: Die aufwendige Produktion treibt die Kosten des Ökosprits nach oben. Mit 1,00 bis 1,20 Euro pro Liter ist es derzeit noch fast doppelt so teuer wie Rohdiesel.

Fazit: Alle Power-to-Gas-Akteure in Deutschland stehen vor dem gleichen Problem: Die Technik ist auf den Weg gebracht, Innovationen laufen, Sprit aus Solar- und Windstrom ist verfügbar. Doch um die Kosten für die Langzeitspeicher Wasserstoff, Methan und Kohlenwasserstoff weiter senken zu können, bedarf es Investitionen in neue und größere Anlagen, die ohne einen geeigneten energiewirtschaftlichen Rahmen aber wohl ausbleiben dürften. Wenn Power-to-Gas ein Erfolg werden soll, braucht es den Anschub der Politik.

Sascha Rentzing, Dortmund

Abs	Neue Energie (2 / 2016)	ee-news (6.2.2016)	Abs
		Power-to-Gas:	
	Allrounder im Wartestand	Welche technische Fragen gibt es beim	
	(Sascha Rentzing)	Hoffnungsträger der Energiewende noch zu	
	(Sussilia Herrizinia)	<u>lösen?</u>	
		(Sascha Rentzing)	
0	Langzeitspeicher, Regelenergie-Erzeuger und	(©SR) Power-to-Gas-Anlagen könnten die	0
	Ökosprit-Lieferant - Power-to-Gas-Anlagen	fluktuierende Einspeisung aus erneuerbaren	
	könnten bei der Energiewende eine zentrale Rolle	Quellen wirksam abfedern. Doch die	
	übernehmen. Doch noch ist die Technik zu teuer.	Umwandlung von Ökostrom in die speicherbaren	
		Gase Wasserstoff und Methan ist noch zu teuer	
		und es gibt noch einige technische Fragen zu	
		lösen. Bei der Forschung vorn dabei sind auch	
		Unternehmen und Institute aus der Schweiz.	
1	Auf guten Wind folgt bei Windradbetreibern in	Auf guten Wind folgt bei Windradbetreibern oft	1
	Schleswig-Holstein oft der Frust.	der Frust.	
	Immer häufiger regeln Netzbetreiber ihre	Immer häufiger regeln Netzbetreiber ihre	
	Turbinen ab, weil sonst zu viel Strom in die	Turbinen ab, weil sonst zu viel Strom in die	
	Leitungen drängen und die Balance im Netz	Leitungen drängen und die Balance im Netz	
	gefährden würde. Allein im ersten Halbjahr 2015	gefährden würde. Allein im ersten Halbjahr 2015	
	konnten laut Bundesnetzagentur in Deutschland	konnten laut deutscher Bundesnetzagentur in	
	durch das sogenannte Einspeisemanagement fast	Deutschland durch das sogenannte	
	1500 Gigawattstunden Strom aus Erneuerbaren-	Einspeisemanagement fast 1500	
	Anlagen und Blockheizkraftwerken (BHKW) nicht	Gigawattstunden Strom aus Erneuerbaren-	
	produziert werden — das entspricht etwa dem	Anlagen und Blockheizkraftwerken (BHKW) nicht	
	Halbjahresverbrauch einer Metropole wie	produziert werden – das entspricht etwa dem	
	Hamburg.	Halbjahresverbrauch einer Metropole wie	
	ridinburg.	Hamburg.	
	"Die Planung von Windenergieanlagen im Norden	"Die Planung von Windenergieanlagen im Norden	
	wird schwieriger, da der Absatz nicht gesichert	wird schwieriger, da der Absatz nicht gesichert	
	ist", erklärt Ove Petersen, Geschäftsführer des	ist", erklärt Ove Petersen, Geschäftsführer des	
	Erneuerbaren-Projektierers GP Joule aus dem	Erneuerbaren-Projektierers GP Joule aus dem	
	nordfriesischen Reußenköge.	-	
	Hordinesischen Neußenkoge.	nordfriesischen Reussenköge.	
2	Ein neues Kombikraftwerk der Firma könnte	Ab 2017 Ein-Megawatt-Stacks Ein neues Kombikraftwerk der Firma könnte	2
2			2
	Abhilfe schaffen. Herzstück ist eine Biogasanlage,	Abhilfe schaffen. Herzstück ist eine Biogasanlage,	
	die um einen sogenannten Elektrolyseur	die um einen sogenannten Elektrolyseur	
	erweitert ist. Immer dann, wenn Windräder in der	erweitert ist. Immer dann, wenn Windräder in der	
	Umgebung zu viel Strom produzieren, wandelt	Umgebung zu viel Strom produzieren, wandelt	
	dieser die Überschüsse per Elektrolyse in	dieser die Überschüsse per Elektrolyse in	
	Wasserstoff (H2) um, der in Tanks gespeichert	Wasserstoff (H2) um, der in Tanks gespeichert	
	wird. Die dabei entstehende Wärme wird ins	wird. Die dabei entstehende Wärme wird ins	
	Fernwärmenetz eingespeist. Steigt der	Fernwärmenetz eingespeist. Steigt der	
	Strombedarf wieder, wird der Wasserstoff mit	Strombedarf wieder, wird der Wasserstoff mit	
	dem Biogas im BHKW der Anlage verbrannt.	dem Biogas im BHKW der Anlage wieder	
		verbrannt.	
	"Auf diese Weise kann eine dezentrale	"Auf diese Weise kann eine dezentrale	
	Biogasanlage als Regelkraftwerk fungieren", sagt	Biogasanlage als Regelkraftwerk fungieren", sagt	
	Petersen. Soeben hat GP Joule den Elektrolyseur	Petersen. Soeben hat GP Joule den Elektrolyseur	
	der Anlage in der letzten Ausbaustufe auf eine	der Anlage in der letzten Ausbaustufe auf eine	
	Gesamtleistung von 200 Kilowatt aufgestockt. Er	Gesamtleistung von 200 Kilowatt aufgestockt. Er	
	besteht aus 40 einzelnen Einheiten (Stacks) mit	besteht aus 40 einzelnen Einheiten (Stacks) mit	
	jeweils fünf Kilowatt Leistung. Ab 2017 soll der	jeweils fünf Kilowatt Leistung. Ab 2017 soll der	
	"Stromlückenfüller" dann auch als	"Stromlückenfüller" dann auch als	
	Industrieanlage mit deutlich leistungsstärkeren	Industrieanlage mit deutlich leistungsstärkeren	

Abs	Neue Energie (2 / 2016)	ee-news (6.2.2016)	Abs
	Ein-Megawatt-Stacks verfügbar sein.	Ein-Megawatt-Stacks verfügbar sein.	
		"Die Frage ist, was wollen wir erreichen?…"	
3	Die Technik könnte für die Energiewende	Die Technik könnte für die Energiewende	3
	unverzichtbar werden. Denn mit Power to Gas	unverzichtbar werden. Denn mit Power to Gas	
	können große Speicherkapazitäten erschlossen	können grosse Speicherkapazitäten erschlossen	
	werden, ohne die sich die steigende Zahl der	werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft	
	fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die	nicht mehr in den Griff bekommen liesse. Die	
	Kapazität der zum Austarieren von	Kapazität der zum Austarieren von	
	Stromerzeugung und Verbrauch bisher	Stromerzeugung und Verbrauch bisher	
	eingesetzten Pumpspeicherkraftwerke ist	eingesetzten Pumpspeicherkraftwerke in	
	begrenzt, Batterien wiederum können	Deutschland ist begrenzt, Batterien wiederum	
	Stromüberschüsse nur vorübergehend	können Stromüberschüsse nur vorübergehend	
	aufnehmen. Wasserstoff hingegen kann	aufnehmen. Wasserstoff hingegen kann	
	elektrische Energie langfristig speichern und	elektrische Energie langfristig speichern und	
	bringt nicht nur dem Stromsektor Nutzen. Er lässt	bringt nicht nur dem Stromsektor Nutzen. Er lässt	
	sich auch als Rohstoff in der chemischen Industrie	sich auch als Rohstoff in der chemischen Industrie	
	einsetzen, etwa zur Entschwefelung von	einsetzen, etwa zur Entschwefelung von	
	Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge	Treibstoff, als Sprit für Brennstoffzellenfahrzeuge	
	verwenden oder in Methan umwandeln, den	verwenden oder in Methan umwandeln, den	
	Hauptbestandteil von natürlichem Erdgas. Das	Hauptbestandteil von natürlichem Erdgas. Das	
	Methan könnte problemlos in das vorhandene	Methan könnte problemlos in das vorhandene	
	Erdgasnetz eingespeist werden, das Heizungen,	Erdgasnetz eingespeist werden, das Heizungen,	
	Kraftwerke und Tankstellen versorgt. "Die Frage	Kraftwerke und Tankstellen versorgt. "Die Frage	
	ist, was wollen wir erreichen? Wenn die	ist, was wollen wir erreichen? Wenn die	
	Energiewende im Wärmemarkt und in der	Energiewende im Wärmemarkt und in der	
	Mobilität Fahrt aufnehmen soll, werden wir Power to Gas schon bald brauchen", sagt Michael	Mobilität Fahrt aufnehmen soll, werden wir Power to Gas schon bald brauchen", sagt Michael	
	Specht von Zentrum für Sonnenenergie- und	Specht von Zentrum für Sonnenenergie- und	
	Wasserstoff-Forschung Baden-Württemberg	Wasserstoff-Forschung Baden-Württemberg	
	(ZSW) in Stuttgart.	(ZSW) in Stuttgart.	
	(Later) in occursors	Power-to-Gas im Hybridwerk Aarmatt von Regio	
		Energie Solothurn	
		Die Regio Energie Solothurn eröffnete im Juni	4
		2015 das Hybridwerk Aarmatt, das Teil des	
		Leuchtturmprogramms des Bundesamtes für	
		Energie BFE ist. Im Hybridwerk – an der	
		Schnittstelle vom Solothurner Strom-, Wasser-,	
		Gas- und Fernwärmenetz – kommt die Power-to-	
		Gas-Technologie zum Einsatz.	
		Technische Daten des Elektrolyseur	
		Aufnahmeleistung 350 kW	
		60 Normkuhikmeter	
		El. Output Wasserstoff pro h	
		Wirkungsgrad 50-60 %	
		Modell Hogen C30 (Proton onsite)	
	1000 Megawatt bis 2022	Schwankungen schnell folgen	
4	Auch die Deutsche Energie-Agentur (Dena)	Allerdings sind bei Power to Gas noch viele	5
	fordert in ihrer Roadmap für Power to Gas	technische Fragen zu lösen.	
	deshalb eine schnelle Entwicklung der Technik.		
	Ab 2022 soll das Verfahren großtechnisch und		

Abs	Neue Energie (2 / 2016)	ee-news (6.2.2016)	Abs
	wirtschaftlich tragfähig eingesetzt werden		
	können, heißt es. Um das Ziel zu erreichen, sollen		
	bis dahin in Deutschland Pilot- und		
	Demonstrationselektrolyseure mit einer		
	Gesamtleistung von 1000 Megawatt errichtet		
	werden. Das ist ein ehrgeiziges Vorhaben, wenn		
	man bedenkt, dass hierzulande erst 20 Power-to-		
	Gas-Anlagen mit insgesamt 30 Megawatt Leistung		
	in Betrieb sind und noch viele technische Fragen		
	zu lösen sind.		
	Da die Ökostromproduktion witterungsbedingt	Da die Ökostromproduktion witterungsbedingt	
	stark schwankt, müssen die Anlagen auf ständige	stark schwankt, müssen die Anlagen auf ständige	
	Lastwechsel reagieren. Die herkömmlichen	Lastwechsel reagieren. Die herkömmlichen	
	alkalischen Elektrolyseure eignen sich hierfür nur	alkalischen Elektrolyseure eignen sich hierfür nur	
	bedingt, da sie für einen relativ konstanten	bedingt, da sie für einen relativ konstanten	
	Lastbereich ausgelegt sind. Neuartige PEM-	Lastbereich ausgelegt sind. Neuartige PEM-	
	Elektrolyseure (PEM steht für Polymer Electrolyte	Elektrolyseure (PEM steht für Polymer Electrolyte	
	Membrane) können Schwankungen schneller	Membrane) können Schwankungen schneller	
	folgen. Beim PEM-Verfahren wird statt	folgen. Beim PEM-Verfahren wird statt	
	Alkalilauge destilliertes Wasser als Elektrolyt	Alkalilauge destilliertes Wasser als Elektrolyt	
	verwendet und über eine spezielle,	verwendet und über eine spezielle,	
	protonenleitende Membran durch Strom in	protonenleitende Membran durch Strom in	
	Wasserstoff und Sauerstoff gespalten — das	Wasserstoff und Sauerstoff gespalten – das	
	geschieht dank der sehr guten Leitfähigkeit der	geschieht dank der sehr guten Leitfähigkeit der	
	Membran in Millisekunden.	Membran in Millisekunden.	
5	Allerdings muss die Technik für den	Allerdings muss die Technik für den	
	großtechnischen Einsatz noch kompakter und	grosstechnischen Einsatz noch kompakter und	
	langlebiger werden. Ein weiteres Manko ist die	langlebiger werden. Ein weiteres Manko ist die	
	Effizienz des Power-to-Gas-Verfahrens.	Effizienz des Power-to-Gas-Verfahrens.	
	Elektrolyseure wandeln Strom mit einem	Elektrolyseure wandeln Strom mit einem	
	Wirkungsgrad von maximal 80 Prozent in	Wirkungsgrad von maximal 80 Prozent in	
	Wasserstoff um. Schaltet man die Methanisierung	Wasserstoff um. Schaltet man die Methanisierung	
	nach, fällt der Wert auf 50 Prozent. Wird am Ende	nach, fällt der Wert auf 50 Prozent. Wird am Ende	
	wieder elektrische Energie erzeugt, sinkt die	wieder elektrische Energie erzeugt, sinkt die	
	Effizienz auf weniger als 40 Prozent.	Effizienz auf weniger als 40 Prozent.	
		Grössere Mengen an CO2	
6	Ein weiteres Problem dabei: Die Methanisierung	Ein weiteres Problem dabei: Die Methanisierung	6
	funktioniert nur mit Kohlendioxid, das mit	funktioniert nur mit Kohlendioxid (CO2), das mit	
	Wasserstoff im sogenannten Sabatier-Prozess in	Wasserstoff im sogenannten Sabatier-Prozess in	
	Methan und Wasser umgewandelt wird. Bei	Methan und Wasser umgewandelt wird. Bei	
	einigen Pilotprojekten wird das CO2 noch in	einigen Pilotprojekten wird das CO2 noch in	
	Flaschen angeliefert. Doch wenn das Verfahren	Flaschen angeliefert. Doch wenn das Verfahren	
	künftig im großen Stil Anwendung finden soll,	künftig im grossen Stil Anwendung finden soll,	
	sind weitaus größere Mengen nötig. Nur woher	sind weitaus grössere Mengen nötig. Nur woher	
	sollen diese kommen? Das CO2 aus	sollen diese kommen? Das CO2 aus	
	Kohlekraftwerken zu verwenden wäre eine	Kohlekraftwerken zu verwenden wäre eine	
	Möglichkeit, wird aber aus ökologischen Gründen	Möglichkeit, wird aber aus ökologischen Gründen	
	kritisch gesehen. Erwogen wird deshalb unter	kritisch gesehen. Erwogen wird deshalb unter	
	anderem, das Gas direkt vor Ort aus der Luft zu	anderem, das Gas direkt vor Ort aus der Luft zu	
	gewinnen. Bei dem Verfahren der Schweizer	gewinnen. Bei dem Verfahren der Schweizer	
	Firma Climeworks etwa wird es in einen Filter mit	Firma Climeworks etwa wird es in einen Filter mit	
	speziellen Molekülen gesogen, an denen sich die	speziellen Molekülen gesogen, an denen sich die	
	CO2-Moleküle sammeln können. Allerdings	CO2-Moleküle sammeln können. Allerdings	
	benötigt auch dieser Prozess Energie, etwa um	benötigt auch dieser Prozess Energie, etwa um	

Abs	Neue Energie (2 / 2016)	ee-news (6.2.2016)	Abs
	das CO2 aus dem Filter zu lösen und für die	das CO2 aus dem Filter zu lösen und für die	
	Methanisierung nutzbar zu machen.	Methanisierung nutzbar zu machen.	
		Ab 2020 mit Multimegawatt-Systemen	
7	Trotz der Hürden glauben die Experten an einen Erfolg von Power to Gas. Es gebe noch großes Entwicklungspotenzial, sagt Wissenschaftler Specht. So können nach der Studie "Development of Water Electrolysis in the European Union" der Beratungsunternehmen E4tech und Element Energy die Kosten für PEM-Systeme bis 2020 auf rund 1000 Euro pro Kilowatt installierte Leistung halbiert werden und bis 2030 sogar auf 720 Euro sinken.	Trotz der Hürden glauben die Experten an einen Erfolg von Power to Gas. Es gebe noch grosses Entwicklungspotenzial, sagt Wissenschaftler Specht. So können nach einer Studie der Beratungsunternehmen E4tech und Element Energy die Kosten noch deutlich sinken.	7
	Maßgeblich hierfür seien Skaleneffekte durch die	Massgeblich hierfür seien Skaleneffekten durch	
	zunehmende Größe der Elektrolyseure. Liegt ihre Leistung heute meistens noch unter einem Megawatt, könne ab 2020 mit Multimegawatt-Systemen gerechnet werden. Außerdem steige durch optimierte Elektrolysezellen die Effizienz des Verfahrens. Schließlich ist davon auszugehen, dass dank technischer Fortschritte bei den Erneuerbaren auch die Kosten für Solar- und Windstrom weiter sinken werden. Wird die Elektrolyse günstiger, dürften auch die Wasserstoffpreise nachgeben. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power to Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung für die Heizung oder die Prozesswärme genutzt, steigt die Effizienz, weil die Wärme nicht wirkungslos verpufft.	die zunehmende Grösse der Elektrolyseure. Liegt ihre Leistung heute meistens noch unter einem Megawatt, rechnen die Experten ab 2020 mit Multimegawatt-Systemen. Ausserdem steige durch optimierte Elektrolysezellen die Effizienz des Verfahrens. Schliesslich ist davon auszugehen, dass dank technischer Fortschritte bei den Erneuerbaren auch die Kosten für Solarund Windstrom weiter sinken werden. Wird die Elektrolyse günstiger, dürften auch die Wasserstoffpreise nachgeben. Abgesehen davon lässt sich der Gesamtwirkungsgrad von Power to Gas durch geschickte Anlagenkonfiguration deutlich erhöhen. Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung für die Heizung oder die Prozesswärme genutzt, steigt die Effizienz, weil die Wärme nicht wirkungslos verpufft.	
	Forschung auf breiter Front	Harda Bata Marana Baranta Cara India	
8	Um das Potenzial von Power to Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten und entwickeln neue Geschäftsmodelle in diesem Bereich. So will GP Joule die PEM-Technik als eines der ersten Unternehmen im großtechnischen Maßstab anbieten. Der hierfür vorgesehene Ein-Megawatt-Stack wird derzeit von Firmentochter H-Tec entwickelt. GP Joule-Specher Timo Bovi veranschaulicht den Vorteil der Neuentwicklung: Die Fünf-Kilowatt-Stacks der Pilotanlage in Reußenköge hätten jeweils die Größe eines Schuhkartons, die neue Ein-Megawatt-Einheit sei bei 200-facher Leistung nur etwa doppelt so groß.	Um das Potenzial von Power to Gas zu heben, erproben Industrie und Forschung die Technik in zahlreichen Projekten und entwickeln neue Geschäftsmodelle in diesem Bereich. So will GP Joule die PEM-Technik als eines der ersten Unternehmen im grosstechnischen Massstab anbieten. Der hierfür vorgesehene Ein-Megawatt-Stack wird derzeit von Firmentochter H-Tec entwickelt. GP Joule-Specher Timo Bovi veranschaulicht den Vorteil der Neuentwicklung: Die Fünf-Kilowatt-Stacks der Pilotanlage in Reussenköge hätten jeweils die Grösse eines Schuhkartons, die neue Ein-Megawatt-Einheit sei bei 200-facher Leistung nur etwa doppelt so gross.	8
	"Durch Materialeinsparungen und eine konsequente Weiterentwicklung der Technologie können wir so die PEM-Elektrolysestacks immer kompakter bauen und den Raumbedarf für die Anlagen damit sehr gering halten", erklärt Bovi. Auch Eon und die Spezialfirmen Hydrogenics und	"Durch Materialeinsparungen und eine konsequente Weiterentwicklung der Technologie können wir so die PEM-Elektrolysestacks immer kompakter bauen und den Raumbedarf für die Anlagen damit sehr gering halten", erklärt Bovi. Auch die Schweiz beteiligt sich an der PEM-	

Abs	Neue Energie (2 / 2016)	ee-news (6.2.2016)	Abs
	Solvicore setzen in ihrem Gemeinschaftsprojekt	Forschung. Hier arbeitet das Paul Scherrer	
	"Windgas Hamburg" bereits einen PEM-	Instituts aus Villigen an der Optimierung der	
	Elektrolyseur mit einem Megawatt Leistung ein.	Technik. Dazu nutzen die Wissenschaftler ein	
	Die Anlagenoptimierung ist bei dem Vorhaben	Elektrolysesystem der Firma Siemens.	
	aber lediglich ein Aspekt. Die Akteure wollen		
	außerdem testen, wie viel Wasserstoff das		
	Erdgasnetz aufnehmen kann. Die Einspeisung von		
	H2 ist nur in bestimmten Mengen möglich, da es		
	eine wesentlich höhere Energiedichte und andere		
	chemische Eigenschaften als Erdgas hat.		
		Im Verbund	
9	Energieversorger Thüga verfolgt mit seinem	Der ostdeutsche Energieversorger Thüga verfolgt	9
	Power-to-Gas-Projekt in Frankfurt ein anderes	mit seinem Power-to-Gas-Projekt in Frankfurt ein	
	Ziel.	anderes Ziel.	
	Im vergangenen Herbst hat er seinen	Im vergangenen Herbst hat er seinen	
	Elektrolyseur virtuell in ein Smart Grid, ein	Elektrolyseur virtuell in ein Smart Grid, ein	
	intelligentes Stromnetz, integriert, das aus	intelligentes Stromnetz, integriert, das aus	
	Windturbinen, Solaranlagen, einem BHKW und	Windturbinen, Solaranlagen, einem BHKW und	
	Stromverbrauchern besteht.	Stromverbrauchern besteht (siehe ee-news.ch	
		vom 15. Dezember >>).	
	Bis 2016 will das Unternehmen nun mit Hilfe	Bis 2016 will das Unternehmen nun mit Hilfe	
	einer im Fraunhofer-Institut für Solare	einer im Fraunhofer-Institut für Solare	
	Energiesysteme in Freiburg entwickelten	Energiesysteme in Freiburg entwickelten	
	Steuerungssoftware herausfinden, ob die Technik	Steuerungssoftware herausfinden, ob die Technik	
	Erzeugung und Verbrauch der Energielandschaft	Erzeugung und Verbrauch der Energielandschaft	
	austarieren kann. Bei der Thüga ist man nach den	austarieren kann. Bei der Thüga ist man nach den	
	ersten Eindrücken zuversichtlich, dass das klappt.	ersten Eindrücken zuversichtlich, dass das klappt.	
	Power to Gas könne Unterschiede auf die Minute	Power to Gas könne Unterschiede auf die Minute	
	genau automatisch aussteuern, heißt es. "Das	genau automatisch aussteuern, heisst es. "Das	
	haben wir bereits bewiesen", entgegnet Jörg	haben wir bereits bewiesen", entgegnet Jörg	
	Müller vom Ökostromanbieter Enertrag. Das	Müller vom Ökostromanbieter Enertrag. Das	
	Unternehmen betreibt in Prenzlau seit 2011 ein	Unternehmen betreibt in Prenzlau seit 2011 ein	
	Hybridkraftwerk, das aus drei Windturbinen, zwei	Hybridkraftwerk, das aus drei Windturbinen, zwei	
	BHKW, einer Biogasanlage und einem	BHKW, einer Biogasanlage und einem	
	Elektrolyseur besteht. Überschüssiger Strom	Elektrolyseur besteht. Überschüssiger Strom	
	dient der Produktion von H2, das ins Erdgasnetz	dient der Produktion von H2, das <mark>in das</mark>	
	fließt. Bisher wird der Wasserstoff vom	Erdgasnetz fliesst. Bisher wird der Wasserstoff	
	Ökoenergieanbieter Greenpeace Energy	vom Ökoenergieanbieter Greenpeace Energy	
	abgenommen, der es als Prowindgas verkauft.	abgenommen, der es als Prowindgas verkauft.	
	Müller hofft allerdings auch auf die	Müller hofft allerdings auch auf die	
	Mobilitätsbranche —und auf stärkere politische	Mobilitätsbranche – und auf stärkere politische	
	Unterstützung. "Die Wasserstofftechnologie ist	Unterstützung. "Die Wasserstofftechnologie ist	
	ausgereift, Wasserstoff könnte locker mit	ausgereift, Wasserstoff könnte locker mit	
	herkömmlichem Sprit konkurrieren. Was fehlt,	herkömmlichem Sprit konkurrieren. Was fehlt,	
	sind die Tankstellen und die	sind die Tankstellen und die	
	Brennstoffzellenfahrzeuge, die das Gas nutzen	Brennstoffzellenfahrzeuge, die das Gas nutzen	
	könnten", sagt Müller.	könnten", sagt Müller.	
	issuited jouge mariet	HSR: Forscht mit EU-Partnern an	
		grosstechnischen Langzeit-Energiespeichern	
		27 Forschungspartner aus sechs europäischen	10
		Ländern wollen der Power-to-Gas-Technologie	10
		aus den Kinderschuhen helfen. In den nächsten	
		vier Jahren soll mit einem Budget von insgesamt	
		28 Millionen Euro erforscht werden, wie die	
		20 Willingther Luid errorschit Werden, wie die	

Abs	Neue Energie (2 / 2016)	ee-news (6.2.2016)	Abs
		europäischen Erdgasnetze als riesige Batterie für	
		klimaneutral erzeugtes Methangas genutzt	
		werden können.	
		Die HSR Hochschule für Technik Rapperswil	11
		koordiniert die Schweizer Aktivitäten im Rahmen	
		des EU-Grossprojektes. 5.7 Millionen Euro des	
		Gesamtbudgets entfallen auf die sechs beteiligten	
		Schweizer Forschungspartner: HSR Hochschule	
		für Technik Rapperswil, Regio Energie Solothurn,	
		Schweizer Verband des Gas- und Wasserfachs,	
		EPFL, EMPA, und das Unternehmen Climeworks.	
		Für den Treibstoffmarkt	
10	Auch die Firma Sunfire aus Dresden zielt mit	Auch die Firma Sunfire aus Dresden zielt mit	12
10	ihrem Produkt "Blue Crude" vorrangig auf den	ihrem Produkt "Blue Crude" vorrangig auf den	
	Kraftstoffmarkt. Dabei handelt es sich jedoch	Treibstoffmarkt. Dabei handelt es sich jedoch	
	nicht um Wasserstoff, sondern um einen flüssigen	nicht um Wasserstoff, sondern um einen flüssigen	
	Kohlenwasserstoff, aus dem sich nach	Kohlenwasserstoff, aus dem sich nach	
	Unternehmensangaben Benzin, Diesel, Kerosin	Unternehmensangaben Benzin, Diesel, Kerosin	
	und Wachse für die Industrie herstellen lassen.	und Wachse für die Industrie herstellen lassen.	
	Sunfires Verfahren: Zunächst wird Wasserdampf	Sunfires Verfahren: Zunächst wird Wasserdampf	
	mit Ökostrom bei 800 Grad Celsius in Wasserstoff	mit Ökostrom bei 800 Grad Celsius in Wasserstoff	
	und Sauerstoff gespalten. Nach der	und Sauerstoff gespalten. Nach der	
	Hochtemperatur-Elektrolyse wird ein Teil des	Hochtemperatur-Elektrolyse wird ein Teil des	
	Wasserstoffs mit CO2, das von außen zugeführt	Wasserstoffs mit CO2, das von aussen zugeführt	
	wird, zu Kohlenmonoxid (CO) reduziert. Es wird	wird, zu Kohlenmonoxid (CO) reduziert. Es wird	
	mit dem restlichen Wasserstoff vermischt und	mit dem restlichen Wasserstoff vermischt und	
	bildet die Basis für das sogenannte Fischer-	bildet die Basis für das sogenannte Fischer-	
	Tropsch-Verfahren, bei dem schließlich das	Tropsch-Verfahren, bei dem schliesslich das	
	energiereiche Blue Crude entsteht. Es sei sehr	energiereiche Blue Crude entsteht. Es sei sehr	
	hochwertig und ermögliche gegenüber	hochwertig und ermögliche gegenüber	
	herkömmlichen Treibstoffen deutliche CO2-	herkömmlichen Treibstoffen deutliche CO2-	
	Einsparungen, heißt es bei Sunfire. Audi, das in	Einsparungen, heisst es bei Sunfire. Audi, das in	
	einer Power-to-Gas-Anlage im emsländischen	einer Power-to-Gas-Anlage im emsländischen	
	Werlte bereits synthetisches Methan für seine	Werlte bereits synthetisches Methan für seine	
	Erdgasflotte herstellt, beteiligt sich deshalb an	Erdgasflotte herstellt, beteiligt sich deshalb an	
	dem Pilotprojekt. Der Nachteil: Die aufwendige	dem Pilotprojekt. Der Nachteil: Die aufwendige	
	Produktion treibt die Kosten des Ökosprits in die	Produktion treibt die Kosten des Ökosprits in die	
	Höhe. Mit einem bis 1,20 Euro pro Liter ist es	Höhe. Mit einem bis 1.20 Euro pro Liter ist es	
	derzeit noch fast doppelt so teuer wie Rohdiesel.	derzeit noch fast doppelt so teuer wie Rohdiesel.	
11	Damit steht Sunfire vor dem gleichen Problem	Damit steht Sunfire vor dem gleichen Problem	13
	wie alle Power-to-Gas-Akteure in Deutschland:	wie alle Power-to-Gas-Akteure in Deutschland:	
	Die Technik ist auf den Weg gebracht,	Die Technik ist auf den Weg gebracht,	
	Innovationen laufen, Sprit aus Solar- und	Innovationen laufen, Sprit aus Solar- und	
	Windstrom ist verfügbar. Doch um die Kosten für	Windstrom ist verfügbar. Doch um die Kosten für	
	die Langzeitspeicher Wasserstoff, Methan und	die Langzeitspeicher Wasserstoff, Methan und	
	Kohlenwasserstoff weiter senken zu können, sind	Kohlenwasserstoff weiter senken zu können, sind	
	Investitionen in neue und größere Anlagen	Investitionen in neue und grössere Anlagen	
	notwendig. Die Frage ist nur: Wann steigen	notwendig. Die Frage ist nur: Wann steigen	
	Investoren ein?	Investoren ein?	

Abs	Neue Energie (2 / 2016)	Frankfurter Allgemeine Zeitung (25.5.2016)	Abs
	Allrounder im Wartestand	Verlagsspezial / Energieträger Gas	
	(Sascha Rentzing)	Power-to-Gas schürt Hoffnungen	
		(Sascha Rentzing)	
0	Langzeitspeicher, Regelenergie-Erzeuger und	Power-to-Gas-Anlagen, die überschüssigen	0
	Ökosprit-Lieferant - Power-to-Gas-Anlagen	Ökostrom in die speicherbaren Gase Wasserstoff	
	könnten bei der Energiewende eine zentrale Rolle	und Methan umwandeln, <mark>könnten</mark> den Ausbau	
	übernehmen. Doch noch ist die Technik zu teuer.	der erneuerbaren Energien erleichtern. Und sie	
		böten eine Chance für die Gasbranche, auf deren	
		Infrastruktur es mehr denn je ankommen würde.	
1	Auf guten Wind folgt bei Windradbetreibern in	Die Bundesregierung hat sich beim Klimaschutz	1
	Schleswig-Holstein oft der Frust. Immer häufiger	viel vorgenommen. Bis 2050 soll der Anteil	
	regeln Netzbetreiber ihre Turbinen ab, weil sonst	erneuerbarer Energien am Stromverbrauch von	
	zu viel Strom in die Leitungen drängen und die	derzeit knapp 35 auf 100 Prozent verdreifacht	
	Balance im Netz gefährden würde. Allein im	werden. Experten halten sogar ein noch höheres	
	ersten Halbjahr 2015 konnten laut	Ausbautempo für nötig. "Wenn es die	
	Bundesnetzagentur in Deutschland durch das	Bundesregierung mit ihrer auf dem Klimagipfel in	
	sogenannte Einspeisemanagement fast 1500	Paris getroffenen Verpflichtung ernst meint, die	
	Gigawattstunden Strom aus Erneuerbaren-	Erderwärmung auf 1,5 Grad Celsius zu begrenzen,	
	Anlagen und Blockheizkraftwerken (BHKW) nicht	muss bis 2050 eine regenerative Vollversorgung	
	produziert werden — das entspricht etwa dem	auch in den Sektoren Mobilität und Wärme	
	Halbjahresverbrauch einer Metropole wie	erreicht werden", sagt der Berliner	
	Hamburg.	Energieprofessor Volker Quaschning.	
	"Die Planung von Windenergieanlagen im Norden	Die Schwierigkeit wird allerdings darin bestehen,	2
	wird schwieriger, da der Absatz nicht gesichert	die steigenden Ökostrommengen in den	
	ist", erklärt Ove Petersen, Geschäftsführer des	Stromleitungen unterzubringen. Die Produktion	
	Erneuerbaren-Projektierers GP Joule aus dem	von Solar- und Windstrom unterliegt	
	nordfriesischen Reußenköge.	witterungsbedingten Schwankungen und muss an	
		den Bedarf angepasst werden, um die	
		Netzstabilität nicht zu gefährden.	
		Entlastung für das Netz	
		Speicher können das Problem lösen, indem sie	3
		Stromüberschüsse aufnehmen und bei Bedarf	
		wieder zur Verfügung stellen. Die Kapazität der	
		deutschen Pumpspeicherkraftwerke reicht jedoch	
		nicht aus, und Batterien sind ungeeignet, um	
		große Strommengen über eine längere Zeit zu	
		speichern. Doch es könnte eine Alternative	
		geben. Denn auch Power-to-Gas-Anlagen können	
		das Netz entlasten.	
2	Ein neues Kombikraftwerk der Firma könnte	Eine der technisch fortschrittlichsten ihrer Art	4
	Abhilfe schaffen. Herzstück ist eine Biogasanlage,	wurde jüngst in Reußenköge bei Husum	
	die um einen sogenannten Elektrolyseur	fertiggestellt.	
L	erweitert ist.		
	Immer dann, wenn Windräder in der Umgebung	Immer dann, wenn Windräder in der Umgebung	
	zu viel Strom produzieren, wandelt dieser die	zu viel Strom produzieren, wandelt ein	
	Überschüsse per Elektrolyse in Wasserstoff (H2)	Elektrolyseur mit 200 Kilowatt Leistung die	
	um, der in Tanks gespeichert wird.	Überschüsse in Wasserstoff um. Das Gas wird in	
		Tanks gespeichert;	
	Die dabei entstehende Wärme wird ins	die bei der Elektrolyse entstehende Wärme ins	
	Fernwärmenetz eingespeist. Steigt der	Fernwärmenetz eingespeist. Steigt der	
	Strombedarf wieder, wird der Wasserstoff mit	Strombedarf wieder, wird der Wasserstoff in	
	dem Biogas im BHKW der Anlage verbrannt.	einer angeschlossenen Biogasanlage wieder	
		verbrannt.	
	"Auf diese Weise kann eine dezentrale		
	"	1	1

Biogasanlage als Regelkraftwerk fungieren", sagt Petersen. Soeben hat GP Joule den Elektrolyseur der Anlage in der letzten Ausbaustufe auf eine Gesamtleistung von 200 Kilowatt aufgestockt. Er besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromezeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff für die Chemieindustrie oder als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	S) Abs
der Anlage in der letzten Ausbaustufe auf eine Gesamtleistung von 200 Kilowatt aufgestockt. Er besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge an. verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
Gesamtleistung von 200 Kilowatt aufgestockt. Er besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
besteht aus 40 einzelnen Einheiten (Stacks) mit jeweils fünf Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
jeweils fünf Kilowatt Leistung. Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
Ab 2017 soll der "Stromlückenfüller" dann auch als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Ab 2017 will die Betreiberfirma GP Joule den Pilotstatus beenden und große Industrieanlager im Megawattmaßstab anbieten. Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Stromsektor einsetzen. Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in de Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
als Industrieanlage mit deutlich leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. 3 Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Pilotstatus beenden und große Industrieanlager im Megawattmaßstab anbieten. Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Er beitet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in de Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
leistungsstärkeren Ein-Megawatt-Stacks verfügbar sein. Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene im Megawattmaßstab anbieten. Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Stromsektor einsetzen. Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in de Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
verfügbar sein. Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Stromsektor einsetzen. Stromsektor einsetzen. Et pietet sich auch als Rohstoff für die Chemieindustrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in de Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	'
Die Technik könnte für die Energiewende unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Die Technik könnte eine wichtige Rolle spielen, denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Stromsektor einsetzen. Stromsektor einsetzen. Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in die Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
unverzichtbar werden. Denn mit Power to Gas können große Speicherkapazitäten erschlossen werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene denn der Wasserstoff lässt sich nicht nur im Stromsektor einsetzen. Stromsektor einsetzen. Er bietet sich auch als Rohstoff für die Chemie Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in die Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	5
werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
werden, ohne die sich die steigende Zahl der fluktuierenden erneuerbaren Quellen in Zukunft nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
nicht mehr in den Griff bekommen ließe. Die Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene	
Kapazität der zum Austarieren von Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Kraftwerke und Tankstellen versorgt.	
Stromerzeugung und Verbrauch bisher eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Stromüberschüster ist begrenzt, Batterien wiederum können Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene eingesetzten Pumpspeicherkraftwerke ist begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene begrenzt, Batterien wiederum können Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Stromüberschüsse nur vorübergehend aufnehmen. Wasserstoff hingegen kann elektrische Langen aufnehmen. Wasserstoff hingegen kann elektrische Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
aufnehmen. Wasserstoff hingegen kann elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge Verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
elektrische Energie langfristig speichern und bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge Verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
bringt nicht nur dem Stromsektor Nutzen. Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
Er lässt sich auch als Rohstoff in der chemischen Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge Verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Er bietet sich auch als Rohstoff für die Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
Industrie einsetzen, etwa zur Entschwefelung von Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge Verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Chemie industrie oder als Sprit für Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
Kraftstoff, als Sprit für Brennstoffzellenfahrzeuge Verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Brennstoffzellenfahrzeuge an. Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
verwenden oder in Methan umwandeln, den Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Oder er kann in Methan umgewandelt und in da Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.	
Hauptbestandteil von natürlichem Erdgas. Das Methan könnte problemlos in das vorhandene Erdgasnetz eingespeist werden, das Heizungen, Kraftwerke und Tankstellen versorgt.) C
Methan könnte problemlos in das vorhandene Kraftwerke und Tankstellen versorgt.	15
= abasist sinbopolot is a deliganden	
Kraftwerke und Tankstellen versorgt. "Die Frage	
ist, was wollen wir erreichen? Wenn die	
Energiewende im Wärmemarkt und in der	
Mobilität Fahrt aufnehmen soll, werden wir	
Power to Gas schon bald brauchen", sagt Michael	
Specht von Zentrum für Sonnenenergie- und	
Wasserstoff-Forschung Baden-Württemberg	
(ZSW) in Stuttgart.	
1000 Megawatt bis 2022	
4 Auch die Deutsche Energie-Agentur (Dena) Nicht nur die Energiewende könnte von Power-	6
fordert in ihrer Roadmap für Power to Gas to-Gas profitieren — weil Haushalte dank	
deshalb eine schnelle Entwicklung der Technik. effizienterer Wärmedämmung und Technologie	n
Ab 2022 soll das Verfahren großtechnisch und wie Wärmepumpen und Sonnenkollektoren	.
wirtschaftlich tragfähig eingesetzt werden immer weniger Gas zum Heizen benötigen, drol	IL
können, heißt es. Um das Ziel zu erreichen, sollen der Absatz fossiler Brennstoffe langfristig zu sinken. Über Power-to-Gas könnte die	
Demonstrationselektrolyseure mit einer Gasinfrastruktur inklusive Erdgasnetz und	
Gesamtleistung von 1000 Megawatt errichtet Gasspeicher auch weiterhin ausgelastet werder	
werden. Das ist ein ehrgeiziges Vorhaben, wenn Viele Firmen der Gasbranche beteiligen sich	.
man bedenkt, dass hierzulande erst 20 Power-to- daher an Power-to-Gas-Projekten, die derzeit	
Gas-Anlagen mit insgesamt 30 Megawatt Leistung aufgelegt werden.	
in Betrieb sind und noch viele technische Fragen	
zu lösen sind.	

Abs	Neue Energie (2 / 2016)	Frankfurter Allgemeine Zeitung (25.5.2016)	Abs
	Da die Ökostromproduktion witterungsbedingt	Allerdings bestehen noch viele technische Fragen.	7
	stark schwankt, müssen die Anlagen auf ständige	Durch die volatile Ökostromproduktion müssen	
	Lastwechsel reagieren.	die Anlagen auf ständige Lastwechsel reagieren.	
	Die herkömmlichen alkalischen Elektrolyseure	Die herkömmlichen alkalischen Elektrolyseure	
	eignen sich hierfür <mark>nur bedingt</mark> , da sie für einen	eignen sich hierfür <mark>kaum</mark> , da sie für einen relativ	
	relativ konstanten Lastbereich ausgelegt sind.	konstanten Lastbereich ausgelegt sind. Neuartige	
	Neuartige PEM-Elektrolyseure (PEM steht für	PEM-Elektrolyseure (PEM steht für Polymer	
	Polymer Electrolyte Membrane) können	Electrolyte Membrane) können Schwankungen	
	Schwankungen schneller folgen.	schneller folgen.	
	Beim PEM-Verfahren wird statt Alkalilauge	Beim PEM-Verfahren wird statt Alkalilauge	
	destilliertes Wasser als Elektrolyt verwendet und	destilliertes Wasser als Elektrolyt verwendet und	
	über eine spezielle, protonenleitende Membran	über eine spezielle, protonenleitende Membran	
	durch Strom in Wasserstoff und Sauerstoff	durch Strom in Wasserstoff und Sauerstoff	
	gespalten — das geschieht dank der sehr guten	gespalten —das geschieht dank der sehr guten	
	Leitfähigkeit der Membran in Millisekunden.	Leitfähigkeit der Membran in Millisekunden.	
5	Allerdings muss die <mark>Technik</mark> für den	Für den großtechnischen Einsatz müssen die	8
	großtechnischen Einsatz noch kompakter und	Anlagen aber noch kompakter und langlebiger	
	langlebiger werden.	werden.	
	Ein weiteres Manko ist die Effizienz des Power-to-	Ein weiteres Manko ist ihre Effizienz.	
	Gas-Verfahrens.		
	Elektrolyseure wandeln Strom mit einem	Elektrolyseure wandeln Strom mit einem	
	Wirkungsgrad von maximal 80 Prozent in	Wirkungsgrad von maximal 80 Prozent in	
	Wasserstoff um. Schaltet man die Methanisierung	Wasserstoff um. Schaltet man die Methanisierung	
	nach, fällt der Wert auf 50 Prozent. Wird am Ende	nach, fällt der Wert auf 50 Prozent. Wird am Ende	
	wieder elektrische Energie erzeugt, sinkt die	wieder elektrische Energie erzeugt, sinkt die	
	Effizienz auf weniger als 40 Prozent.	Effizienz auf weniger als 40 Prozent.	
6	Ein weiteres Problem dabei: Die Methanisierung	Außerdem funktioniert die Methanisierung nur	9
	funktioniert nur mit Kohlendioxid, das mit	mit Kohlendioxid (CO2), das mit Wasserstoff in	
	Wasserstoff im sogenannten Sabatier-Prozess in	Methan und Wasser umgewandelt wird.	
	Methan und Wasser umgewandelt wird.		
	Bei einigen Pilotprojekten wird das CO2 noch in	Bei einigen Pilotprojekten wird das CO2 noch in	
	Flaschen angeliefert. Doch wenn das Verfahren	Flaschen angeliefert. Doch industrielle Anlagen	
	künftig im großen Stil Anwendung finden soll,	bräuchten künftig größere Mengen.	
	sind weitaus größere Mengen nötig. Nur woher		
	sollen diese kommen?		
	Das CO2 aus Kohlekraftwerken zu verwenden	Das CO2 aus Kohlekraftwerken zu verwenden ist	
	wäre eine Möglichkeit, wird aber aus	aus ökologischen Gründen keine Option.	
	ökologischen Gründen kritisch gesehen.		
	Erwogen wird deshalb unter anderem, das Gas	Erwogen wird deshalb, das Gas direkt vor Ort mit	
	direkt vor Ort aus der Luft zu <mark>gewinnen</mark> . Bei dem	Adsorptionsanlagen aus der Luft zu filtern.	
	Verfahren der Schweizer Firma Climeworks etwa		
	wird es in einen Filter mit speziellen Molekülen		
	gesogen, an denen sich die CO2-Moleküle		
	sammeln können.		
	Allerdings benötigt auch dieser Prozess Energie,	Doch auch dieses Verfahren ist noch nicht	
	etwa um das CO2 aus dem Filter zu lösen und für	ausgereift.	
	die Methanisierung nutzbar zu machen.		
7	Trotz der Hürden glauben die Experten an einen	Trotz der Hürden glauben die Experten an einen	10
	Erfolg von Power to Gas. Es gebe noch großes	Erfolg von Power-to-Gas. Es gebe großes	
	Entwicklungspotenzial, sagt Wissenschaftler	Entwicklungspotential, sagt der Chemiker Michael	
	Specht.	Specht vom Forschungsinstitut ZSW in Stuttgart.	
	So können nach der Studie "Development of	So seien bei der Elektrolyse und den	
	Water Electrolysis in the European Union" der	erneuerbaren Energien noch deutliche technische	
	Beratungsunternehmen E4tech und Element	Fortschritte zu erwarten.	
	U		

Abs	Neue Energie (2 / 2016)	Frankfurter Allgemeine Zeitung (25.5.2016)	Abs
	Energy die Kosten für PEM-Systeme bis 2020 auf		
	rund 1000 Euro pro Kilowatt installierte Leistung		
	halbiert werden und bis 2030 sogar auf 720 Euro		
	sinken. Maßgeblich hierfür seien Skaleneffekte		
	durch die zunehmende Größe der Elektrolyseure.		
	Liegt ihre Leistung heute meistens noch unter		
	einem Megawatt, könne ab 2020 mit		
	Multimegawatt-Systemen gerechnet werden.		
	Außerdem steige durch optimierte		
	Elektrolysezellen die Effizienz des Verfahrens.		
	Schließlich ist davon auszugehen, dass dank		
	technischer Fortschritte bei den Erneuerbaren		
	auch die Kosten für Solar- und Windstrom weiter		
	sinken werden. Wird die Elektrolyse günstiger,		
	dürften auch die Wasserstoffpreise nachgeben.		
	Abgesehen davon lässt sich der	Abgesehen davon lässt sich der	
	Gesamtwirkungsgrad von Power to Gas durch	Gesamtwirkungsgrad von Power-to-Gas durch	
	geschickte Anlagenkonfiguration deutlich erhöhen.	geschickte Anlagenkonfiguration deutlich erhöhen.	
	Wird zum Beispiel die Abwärme der Elektrolyse und der Methanisierung <mark>für die Heizung oder die</mark>	Wird zum Beispiel die Abwärme der Elektrolyse	
	Prozesswärme genutzt, steigt die Effizienz, weil	und der Methanisierung <mark>als Fernwärme</mark> genutzt, steigt die Effizienz.	
	die Wärme nicht wirkungslos verpufft.	steigt die Emzienz.	
	Forschung auf breiter Front		
8	Um das Potenzial von Power to Gas zu heben,	Um das Potential von Power-to-Gas zu heben,	11
0	erproben Industrie und Forschung die Technik in	erproben Industrie und Forschung die Technik in	11
	zahlreichen Projekten und entwickeln neue	zahlreichen Projekten.	
	Geschäftsmodelle in diesem Bereich, ere	Zami cichen i rojektem.	
	chemische Eigenschaften als Erdgas hat.		
	So will GP Joule die PEM-Technik als eines der	GP-Joule-Tochter H-Tec entwickelt derzeit eine	
	ersten Unternehmen im großtechnischen	PEM-Elektrolyse-Einheit mit einem Megawatt	
	Maßstab anbieten. Der hierfür vorgesehene Ein-	Leistung. Diese sei kaum größer als die in der	
	Megawatt-Stack wird derzeit von Firmentochter	Pilotanlage in Reußenköge eingesetzten Fünf-	
	H-Tec entwickelt. GP Joule-Specher Timo Bovi	Megawatt-Stacks, erreiche aber die 200fache	
	veranschaulicht den Vorteil der Neuentwicklung:	Leistung, erklärt Firmensprecher Timo Bovi.	
	Die Fünf- <mark>Kilowatt</mark> -Stacks der Pilotanlage in		
	Reußenköge hätten jeweils die Größe eines		
	Schuhkartons, die neue Ein-Megawatt-Einheit sei		
	bei 200-facher Leistung nur etwa doppelt so groß.		
	"Durch Materialeinsparungen und eine		
	konsequente Weiterentwicklung der Technologie		
	können wir so die PEM-Elektrolysestacks immer		
	kompakter bauen und den Raumbedarf für die		
	Anlagen damit sehr gering halten", erklärt Bovi.		
	Auch Eon und die Spezialfirmen Hydrogenics und		
	Solvicore setzen in ihrem Gemeinschaftsprojekt		
	"Windgas Hamburg" bereits einen PEM- Elektrolyseur mit einem Megawatt Leistung ein.		
	Die Anlagenoptimierung ist bei dem Vorhaben		
	aber lediglich ein Aspekt. Die Akteure wollen		
	außerdem testen, wie viel Wasserstoff das		
	Erdgasnetz aufnehmen kann. Die Einspeisung von		
	H2 ist nur in bestimmten Mengen möglich, da es		
	eine wesentlich höhere Energiedichte und and		
	cine wesenthen noncie Energieulente una ana		

Abs	Neue Energie (2 / 2016)	Frankfurter Allgemeine Zeitung (25.5.2016)	Abs
9	Energieversorger Thüga verfolgt mit seinem		
	Power-to-Gas-Projekt in Frankfurt ein anderes		
	Ziel. Im vergangenen Herbst hat er seinen		
	Elektrolyseur virtuell in ein Smart Grid, ein		
	intelligentes Stromnetz, integriert, das aus		
	Windturbinen, Solaranlagen, einem BHKW und		
	Stromverbrauchern besteht. Bis 2016 will das		
	Unternehmen nun mit Hilfe einer im Fraunhofer-		
	Institut für Solare Energiesysteme in Freiburg		
	entwickelten Steuerungssoftware herausfinden,		
	ob die Technik Erzeugung und Verbrauch der		
	Energielandschaft austarieren kann. Bei der		
	Thüga ist man nach den ersten Eindrücken		
	zuversichtlich, dass das klappt. Power to Gas		
	könne Unterschiede auf die Minute genau		
	automatisch aussteuern, heißt es. "Das haben wir		
	bereits bewiesen", entgegnet Jörg Müller vom		
	Ökostromanbieter Enertrag. Das Unternehmen		
	betreibt in Prenzlau seit 2011 ein		
	Hybridkraftwerk, das aus drei Windturbinen, zwei		
	BHKW, einer Biogasanlage und einem		
	Elektrolyseur besteht. Überschüssiger Strom		
	dient der Produktion von H2, das ins Erdgasnetz		
	fließt. Bisher wird der Wasserstoff vom		
	Ökoenergieanbieter Greenpeace Energy		
	abgenommen, der es als Prowindgas verkauft.		
	Müller hofft allerdings auch auf die		
	Mobilitätsbranche —und auf stärkere politische		
	Unterstützung. "Die Wasserstofftechnologie ist		
	ausgereift, Wasserstoff könnte locker mit		
	herkömmlichem Sprit konkurrieren. Was fehlt,		
	sind die Tankstellen und die		
	Brennstoffzellenfahrzeuge, die das Gas nutzen		
	könnten", sagt Müller.		
		Investoren gesucht	
10	Auch die Firma Sunfire aus Dresden zielt mit	Die Firma Sunfire aus Dresden geht noch einen	12
	ihrem Produkt "Blue Crude" vorrangig auf den	Schritt weiter und prozessiert Wasserstoff zu	
	Kraftstoffmarkt. Dabei handelt es sich jedoch	Kohlenwasserstoff, einem Kraftstoff.	
	nicht um Wasserstoff, sondern um einen flüssigen		
	Kohlenwasserstoff, aus dem sich nach		
	Unternehmensangaben Benzin, Diesel, Kerosin		
	und Wachse für die Industrie herstellen lassen.	11 × 61	
	Sunfires Verfahren: Zunächst wird Wasserdampf	Ihr Verfahren:	
	mit Ökostrom bei 800 Grad Celsius in Wasserstoff		
	und Sauerstoff gespalten.	Nicola des Elektrolos en 194 et e # 90 f	
	Nach der Hochtemperatur-Elektrolyse wird ein	Nach der Elektrolyse wird ein Teil des	
	Teil des Wasserstoffs mit CO2, das von außen	Wasserstoffs mit CO2, das von außen zugeführt	
	zugeführt wird, zu Kohlenmonoxid (CO) reduziert.	wird, zu Kohlenmonoxid (CO) reduziert. Dieses	
	Es wird mit dem restlichen Wasserstoff vermischt	wird mit dem restlichen Wasserstoff vermischt	
	und bildet die Basis für das sogenannte Fischer-	und bildet die Basis für das sogenannte Fischer-	
	Tropsch-Verfahren, bei dem schließlich das	Tropsch-Verfahren, bei dem schließlich das	
	energiereiche Blue Crude entsteht. Es sei sehr	energiereiche Blue Crude entsteht. Es sei sehr	
	hochwertig und ermögliche gegenüber	hochwertig und könne fast ohne CO2-Emissionen	
	herkömmlichen Treibstoffen deutliche CO2-	hergestellt werden, heißt es bei Sunfire.	

Abs	Neue Energie (2 / 2016)	Frankfurter Allgemeine Zeitung (25.5.2016)	Abs
	Einsparungen, heißt es bei Sunfire. Audi, das in		
	einer Power-to-Gas-Anlage im emsländischen		
	Werlte bereits synthetisches Methan für seine		
	Erdgasflotte herstellt, beteiligt sich deshalb an		
	dem Pilotprojekt.		
	Der Nachteil: Die aufwendige Produktion treibt	Der Nachteil: Die aufwendige Produktion treibt	13
	die Kosten des Ökosprits in die Höhe. Mit einem	die Kosten in die Höhe. Mit einem bis 1,20 Euro	
	bis 1,20 Euro pro Liter ist es derzeit noch fast	pro Liter ist Blue Crude derzeit noch fast doppelt	
	doppelt so teuer wie Rohdiesel.	so teuer wie Rohdiesel.	
11	Damit steht Sunfire vor dem gleichen Problem	Damit steht Sunfire vor dem gleichen Problem	
	wie alle Power-to-Gas-Akteure in Deutschland:	wie alle Power-to-Gas-Akteure: Die Technik ist	
	Die Technik ist <mark>auf den Weg gebracht,</mark>	vielversprechend, aber noch nicht	
	Innovationen laufen, Sprit aus Solar- und	konkurrenzfähig.	
	Windstrom ist verfügbar.		
	Doch um die Kosten für die Langzeitspeicher	Um die Kosten weiter senken zu können, <mark>wären</mark>	
	Wasserstoff, Methan und Kohlenwasserstoff	Investitionen in neue und größere Anlagen	
	weiter senken zu können, <mark>sind</mark> Investitionen in	notwendig. Die Frage ist nur: Wann steigen	
	neue und größere Anlagen notwendig. Die Frage	Investoren ein?	
	ist nur: Wann steigen Investoren ein?		